Объяснение:
d₁ = 16 см
d₂ = 30 см
а = 17 см
Доказать, что данный параллелограмм - ромб
Если в параллелограмме диагонали пересекаются под прямым углом, то параллелограмм является ромбом.
Тогда половинки диагоналей и сторона ромба образуют прямоугольный треугольник, и по теореме Пифагора
а² = (0,5d₁)² + (0,5d₂)²
Проверим, так ли это.
17² = 8² + 15²
289 = 64 + 225
289 ≡ 289
Полученное тождество говорит, что действительно половинки диагоналей и сторона ромба образуют прямоугольный треугольник. Значит, диагонали этого параллелограмма пересекаются под прямым углом, и параллелограмм является ромбом, что и требовалось доказать.
Окружность вторично пересекает AD в точке E.
AB - касательная. По теореме о касательной и секущей:
AB^2=AD*AE => 25*3=15*AE => AE=5
AB/AD =1/√3 =AE/AB
△EAB~△BAD (по двум пропорциональным сторонам и углу между ними)
=> ∠ABE=∠ADB
∠ADB=∠CBD (накрест лежащие при BC||AD) => ∠ABE=∠CBD
EBCD - вписанная трапеция => равнобедренная, BE=CD=x
Внешний угол вписанного четырехугольника равен противолежащему внутреннему.
∠BEA=∠BCD
△BEA~△BCD (по двум углам) => BE/BC=AE/CD => x/5=5/x => x=5
BC=BE=5 => BD=AB=5√3
ED=AD-AE =15-5 =10
Для треугольника EBD выполняется теорема Пифагора:
10^2 =5^2 +(5√3)^2 => треугольник прямоугольный
∠EBD=90° => ED - диаметр, радиус=ED/2=5
В треугольнике EBD высота из прямого угла:
h =BE*BD/ED =5*5√3/10 =5√3/2
S(ABCD) =1/2 (BC+AD) h =1/2 (5+15) 5√3/2 =50√3/2
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике авс угол при вершине в=120 градусов, а основание-8см. найдите боковую сторону.
дано:
abc - равнобедренный треугольник
угол b=120 градусов
ac=8 см
найти:
ab -?
пусть точка d - середина стороны ас
проведем высоту ad
рассмотрим треугольник adb
по свойству медианы треугольника, угол abd=60 градусов;
т.к. треугольник abc равнобедренный, то угол bad=30 градусов
из этих условий следует, что треугольник abd - прямоугольный
ab=ad/sin b
ab=8
сторона ab треугольника adb является также стороной треугольника abc
ответ: ab=8см