TMNK- равнобедренная трапеция вписана окружность. Площадь трапеции 125. Хорда, параллельная основаниям , проведена в точки касания боковых сторон и равна 8. Найдите площадь круга.
Объяснение:
S(круга)= π R². R-?
1) Пусть О-центр вписанной окружности, ОА=ОР=ОY=R.
S (трапеции) =1/2*h*(a+b) , h=2R , (a+b)/2- длина средней линии.
2) Проведем среднюю линию НС. Она будет параллельна АВ, и пройдет через центр О (по свойству противоположных сторон описанного четырехугольника)
3) Т.к АВ параллельна основаниям , то ∠АХО=90° , тк радиус проведенный в точку касания перпендикулярен касательной.
ΔАХО-прямоугольный , cos∠ОАХ=АХ/АО , cos∠ОАХ=4/R
4) ∠ОАХ=∠АОН , тк АХ|| НО , АО-секущая.
ΔАОН-прямоугольный, cos∠ОАН=АО/НО, 4/R= R/НО ,4HO=R², 2(2HO)=R², HC=R²/2,
5) S (трапеции) =1/2 *(a+b) *h или 125= R²/2*2R , 125=R ³, R=5
S(круга)= 25π ед².
Поделитесь своими знаниями, ответьте на вопрос:
Точка s одинаково удалена от вершин квадрата abcd. as =30см. расстояние от точки s до плоскости квадрата abcd равна 24 см. найдите сторону квадрата
AS=BS=CS=DS= 30 см, SO=24 см, SO_|_ABCD. О - точка пересечения диагоналей квадрата - основания пирамиды.
рассмотрим ΔAOS:
<AOS=90°,
гипотенуза AS=30 см
катет SO=24 см
катет AO, найти по теореме Пифагора:
AS²=AO²+SO²
30²=AO²+24², AO²=30²-24². 30²-24²=(30-24)*(30+24)=6*54=6*6*9
AO=6*3, AO=18 см
AO=AC/2. AC диагональ квадрата, АС=36 см
AC²=2a², a - сторона квадрата
36²=2*а². а=18√2
ответ: сторона квадрата AB=18√2 см