диагонали ромба равны 10√29 и 4√29 см.
Объяснение:
Найдём длину перпендикуляра из точки пересечения диагоналей ромба на сторону ромба (этот перпендикуляр равен половине высоты ромба).
По свойству высоты h прямоугольного треугольника она равна среднему геометрическому из длин отрезков, на которые эта высота делит гипотенузу.
h = √(4*25)= √100 = 10 см.
Теперь находим длины половин диагоналей ромба как гипотенузы прямоугольных треугольников с катетами 25 и h, и 4 и h.
(d1/2) = √(25² + 10²) = √(625 + 100) = √725 = 5√29 см.
(d2/2) = √(4² + 10²) = √(16 + 100) = √116 = 2√29 см.
Поделитесь своими знаниями, ответьте на вопрос:
Дано: 3 прямые a, b, c и секущая d∠1=∠2 ∠2+∠3=180 доказать что a║b
<2+<3=180⇒<2=180-<3
Значит <2=<4-соответственные⇒b||c
<1=<2-соответственные⇒b||a
Отсюда идет,что a||c