A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
Поделитесь своими знаниями, ответьте на вопрос:
Запишите уравнение все точки которой равноудалены от точек : a) а(1, 1) и в(3, 3) б) m(0, 2) и n(4, -2)
Уравнение АВ: (х-1)/(3-1) = (у-1)/(3-1).
х-1 = у-1 или у = х.
Это уравнение прямой, проходящей через начало координат, α = 45°.
Заданное геометрическое место точек, равно удалённых от точек А и В - это перпендикуляр к середине отрезка АВ.
Угловой коэффициент такой прямой равен -1/1 = -1.
И уравнение получаем у = -х + в.
Для нахождения параметра в надо найти координаты точки С - середины АВ.
С((1+3)/2=2; (1+3)/2=2) = (2; 2).
Подставим эти данные в уравнение прямой у = -х + в:
2 = -2 + в, отсюда в = 4.
ответ: у = -х + 4.
Вторая задача решается аналогично.