8 см
Объяснение:
Найдём ∠М = 180° - (∠К + ∠Е) = 180° - (90° + 30°) = 180° - 120° = 60°
Так как биссектриса делит угол пополам, то значит ∠ЕМС = ∠СМК = 60° : 2 = 30°
∠Е = ∠ЕМС = 30° - по доказательству и условию. Из этого следует, что ΔЕМС - равнобедренный с бёдрами ЕС и СМ. Значит ЕС = СМ.
Так как ∠СМЕ = 30° , то ∠МСК = 180° - (∠К + ∠СМЕ) = 180° - (90° + 30°) = 180° - 120° = 60°. В прямоугольном треугольнике, катет лежащий против угла 30° равен половине гипотенузы. То есть СМ = 2СК.
ЕК = ЕС + СК = ЕС + СМ : 2 = ЕС + ЕС : 2 = 1,5ЕС. Так как ЕК = 12 см (по условию), то 12 = 1,5ЕС ⇒ ЕС = 12 : 1,5 = 8 см
Так как по вышеприведённому доказательству ЕС = СМ = 8 см
8 см
Объяснение:
Найдём ∠М = 180° - (∠К + ∠Е) = 180° - (90° + 30°) = 180° - 120° = 60°
Так как биссектриса делит угол пополам, то значит ∠ЕМС = ∠СМК = 60° : 2 = 30°
∠Е = ∠ЕМС = 30° - по доказательству и условию. Из этого следует, что ΔЕМС - равнобедренный с бёдрами ЕС и СМ. Значит ЕС = СМ.
Так как ∠СМЕ = 30° , то ∠МСК = 180° - (∠К + ∠СМЕ) = 180° - (90° + 30°) = 180° - 120° = 60°. В прямоугольном треугольнике, катет лежащий против угла 30° равен половине гипотенузы. То есть СМ = 2СК.
ЕК = ЕС + СК = ЕС + СМ : 2 = ЕС + ЕС : 2 = 1,5ЕС. Так как ЕК = 12 см (по условию), то 12 = 1,5ЕС ⇒ ЕС = 12 : 1,5 = 8 см
Так как по вышеприведённому доказательству ЕС = СМ = 8 см
Поделитесь своими знаниями, ответьте на вопрос:
Диагональ осевого сечения цилиндра равна 3 корня из 2 и образует с плоскостью основания угол 45 градусов найти площадь полной поверхности цилиндра
Диагональ образовала прямоугольный равнобедренный треугольник.
По теореме Пифагора, катеты равны а=√с²/2= √9*2/2=3 см.
Катеты являются диаметром и высотой цилиндра.
Площадь полной поверхности цилиндра равна 2*πr²+πd*h=
2*3,14*2,25+3,14*3*3=13,815+28,26=42,075 см²