Центр вписанной в треугольник окружности лежит в точке пересечении биссектрис этого треугольника. Значит ВМ - это биссектриса угла В (<МВА=<МВС=<В/2=<А). Получается, что <В=2<А.
Т.к. <В+<А=90°, то <А=30°, а <В=60°.
ΔАМВ - равнобедренный (АМ=ВМ=8√3), т.к. углы при основании равны.
Из прямоугольного ΔМВС
МС=ВМ/2=8√3/2=4√3 (катет против угла 30° равен половине гипотенузы)
ВС=√(ВМ²-МС²)=√(192-48)=√144=12
Из прямоугольного ΔАВС
ВС=АВ/2 (катет против угла 30° равен половине гипотенузы)
АВ=2ВС=2*12=24
Объяснение:
<A = 180° - <C - <B = 180° - 90° - 45° = 45°
И треугольник ABC равнобедренный (углы при основании AB равны по 45°), CD его высота, проведенная к основанию. По известной теореме, высота, проведенная к основанию равнобедренного треугольника, является биссектрисой и медианой.
Поэтому CD - биссектриса <C, тогда <BCD=<ACD = <C/2 = 90°/2 = 45°, поэтому треугольники BCD и ACD - равнобедренные (у них углы при основаниях BC и AC по 45°). Поэтому CD=BD = 16см, CD=AD = 16см.
AB = AD+BD = 16см+16см = 32см.
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть висоту рівностороннього трикутника якщо його сторона дорівнює 1)√3 см 2)10 см 3)а
корень из 3*корень из 3/2=1,5
2)5 корней из3
3) a^2*корень из 3/2