KA = KB = KC = KD = 13
Объяснение:
Из прямоугольного треугольника АВС находим АС по теореме Пифагора:
АС = √(АВ² + ВС²) = √(36 + 64) = 10
Диагонали прямоугольника равны и точкой пересечения делятся пополам:
АО = ВО = СО = DO = 5
АО, ВО, СО и DO - проекции наклонных KA, KB, KC и KD на плоскость прямоугольника.
Если равны проекции наклонных, проведенных из одной точки, то равны и сами наклонные, т.е.
KA = KB = KC = KD.
Из прямоугольного треугольника АОК по теореме Пифагора находим КА:
КА = √(ОК² + АО²) = √(12² + 5²) = √(144 + 25) = √169 = 13
KA = KB = KC = KD = 13
Поделитесь своими знаниями, ответьте на вопрос:
Перпендикулярное сечение насыпи шоссе имеет вид равнобедренной трапеции с верхним основанием 8м, боковыми сторонами 2, 6м и высотой 2, 4м. сколько кубических метров грунта нужно для постройки 10м такого шоссе?
найдем образовавшиеся меньший отрезок по т. Пифагора:
√(2,6² - 2,4²) = 1 м
если мы опустим из второй вершины, принадлежащей меньшему основании трапеции высоту на большее основание она отсечет от большего основания также отрезок равный 1м
В результате, проведя так две высоты, мы увидим, что большее основание они поделили на три отрезка: два из которых равны по 1 м, а третий равен меньшему основанию (так как он вкупе с высотами и меньшим основанием образует прямоугольник, а прямоуг. противополож. стороны равны)
Значит длина большего основания равна 1+1+ 8 = 10 м
Площадь трапеции равна (10 + 8)/2 * 2,4 = 21, 6 м²
А для того чтобы найти количество кубических метров грунта, которые нужно привезти на постройку шоссе длиной 10 м, нам сдледует вычислить объем прямоугольной призмы, основанием которой будет наша трапеция и боковая сторона которой будет равна 10 м
Вычисляем: 21,6 * 10 = 216 м³