Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 2 : 3, считая от вершины угла при основании треугольника. Найдите основание треугольника, если его боковая сторона равна 15 см
Объяснение:
ΔАВС, АВ=ВС=15 см, К, Р, М-точки касания окружности сторон АВ,ВС,АС соответственно,АК/КВ=2/3. Найти АС.
Отрезок АВ , по условию , состоит из 5 частей или 15 см⇒
1 часть равна 3 см. Тогда АК=6см .
Т.к. АВ=ВС, то СР/РВ=2/3.
По свойству отрезков касательных , проведенных из одной точки :
АК=АМ=6 см, МС=СР=6 см ⇒ АС=АМ+МС=6+6=12(см)
ответ: R=h=2,9.
Объяснение:
Объём бака V=π*R²*h, а расход материала будет наименьшим в том случае, если будет наименьшей поверхность бака S. А так как S=π*R²+2*π*R*h, то задача сводится к нахождению условного экстремума функции двух переменных. Но так как при этом V=24,389*π=const, то h=V/(π*R²), и задача упрощается до нахождения экстремума функции одной переменной R. Тогда S(R)=π*R²+2*π*R*V/(π*R²)=π*R²+2*V/R. Производная S'(R)=2*π*R-2*V/R². Приравнивая её к нулю, получаем уравнение π*R=V/R², откуда R=∛(V/π)=2,9. Если R<2,9, то S'(R)<0; если R>2,9, то S'(R)>0. Поэтому значение R=2,9 доставляет минимум функции S(R). При R=2,9 h=V/(π*R²)=2,9.
Поделитесь своими знаниями, ответьте на вопрос:
Длина двух сторон треугольника равны 4 и 15. сколько различных целых значений может принимать длина третьей стороны этого треугольника?
0<x<(4+15),
0<x<19.
Целые значения, которые удовлетворяют этому неравенству
это натуральные числа от 1 до 18. То есть 18 различных значений.