avdeevau807
?>

На какие два угла нельзя разбить тупой угол лучом, выходящем из его вершины? 1. на два тупых 2. на два острых 3. на тупой и острый 4 на прямой и острый

Геометрия

Ответы

mrvasilev2012
Тупой угол можно разбить лучом, выходящем из его вершины на два острых, на тупой и острый, и на прямой и острый. Соответственно, ответ: на два тупых.
uglichdeti
Ну очевидно, что длина ребра равна 6 см, а половины ребра 3 см. Скрещивающимися являются любое вертикальное ребро и две пары горизонтальных ребер (два ребра на верхнем и два ребра на нижнем основаниях, не пересекающиеся с данным вертикальным ребром. Расстояние между их серединами равно √(3^2+6^2+3^2)=√(54)=3*√(6) см. Чтоб было понятнее, представь, что куб разрезан пополам плоскостью, параллельной одной из граней. Получившаяся пластинка снова разрезана пополам, но плоскостью, параллельной другой грани. Получился параллелепипед с размерами 3х3х6 см. Искомое расстояние является диагональю этого параллелепипеда.
Maksim Lokhov

Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.

13x+4y-7=13\cdot 5+4\cdot (-3)-7=46\ne 0\\\\2x-y-1=2\cdot 5-(-3)-1=12\ne 0

Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.

BN⊥AC  ⇒  направляющий вектор для АС равен нормальному вектору для BN:  \vec{s}_{AC}=(2,-1) .

Точка А(5,-3)∈АС и уравнение АС имеет вид:

\frac{x-5}{2}=\frac{y+3}{-1}\; \; ,\; \; -x+5=2y+6\; \; ,\; \; \underline {x+2y+1=0}

CM⊥AB  ⇒  направляющий вектор для АВ равен нормальному вектору для CМ:  \vec{s}_{AB}=(13,4)  .

Точка А(5,-3)∈АВ и уравнение АВ имеет вид:

\frac{x-5}{13}=\frac{y+3}{4}\; \; ,\; \; 4x-20=13y+39\; \; ,\; \; \underline {4x-13y-59=0}

Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .

B:\; \left \{ {{4x-13y=59\qquad } \atop {2x-y=1\, |\cdot (-2)}} \right.\oplus \left \{ {{-11y=57} \atop {2x=y+1}} \right. \; \; \left \{ {{y=-\frac{57}{11}} \atop {2x=-\frac{46}{11}}} \right.\; \; \left \{ {{y-\frac{57}{11}} \atop {x=-\frac{23}{11}}} \right. \; \; B(-\frac{23}{11}\, ,\, -\frac{57}{11})\\\\\\C:\; \left \{ {{x+2y=-1\, |\cdot (-2)} \atop {13x+4y=7\qquad }} \right.\oplus \left \{ {{2y=-x-1} \atop {11x=9\quad }} \right. \; \; \left \{ {{2y=-\frac{20}{11}} \atop {x=\frac{9}{11}}} \right.\; \left \{ {{y=-\frac{10}{11}} \atop {x=\frac{9}{11}}} \right.\; \; C(\frac{9}{11}\, ,\, -\frac{10}{11})


Даны уравнения прямых, содержащих высоты треугольника, и координаты одной из вершин треугольника. вы

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На какие два угла нельзя разбить тупой угол лучом, выходящем из его вершины? 1. на два тупых 2. на два острых 3. на тупой и острый 4 на прямой и острый
Ваше имя (никнейм)*
Email*
Комментарий*