В прямоугольный ΔАВС, ∠С=90 вписан круг .Биссектриса ∠А делит катет в отношении CD:DB=3:5. Найдите площадь круга
Решение Площадь круга S= πr² .Радиус вписанной окружности найдем из формулы S=1/2*P*r .
1) Тк " биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника" , то CD:СА=ВD:АВ или 3:СА=5:АВ ⇒ , а это по определению sinB .
2) По основному тригонометрическому тождеству
sin²B+cos²B=1 получаем cosB=√(1- )=
3) cosB= или ⇒ AB=10.
По т Пифагора АС=√(АВ²-ВС²)=√(100-64)=6
4) S=1/2*P*r
1/2*BC*AC=1/2*(AB+BC+AC)*r
1/2*8*6=1/2*24*r ⇒ r=2 ед
S(круга)=π*2²=4π (ед²)
Объяснение:
Формула:
(n²-3n)/2, где n- количество сторон (углов) многоугольника.
а) восьмиугольник
n=8
(8²-3*8)/2=(64-24)/2=40/2=20 диагоналей.
б) двадцатиугольник
n=20
(20²-3*20)/2=(400-60)/2=170 диагоналей
в) девятиугольник
n=9
(9²-3*9)/2=(81-27)/2=54/2=27 диагоналей
г) четырехугольник
n=4
(4²-3*4)/2=(16-12)/2=4/2=2 диагонали
д) семиугольник
n=7
(7²-3*7)/2=(49-21)/2=28/2=14 диагоналей
е) двенадцатиугольника
n=12
(12²-3*12)/2=(144-36)/2=54 диагонали.
ж) пятиугольник
n=5
(5²-3*5)/2=(25-15)/2=10/2=5 диагоналей
з) десятиугольник
n=10
(10²-3*10)/2=(100-30)/2=70/2=35 диагоналей
и) шестиугольник
n=6
(6²-3*6)/2=(36-18)/2=9 диагоналей.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике угол при основании равен 25°.найдите внешний угол при вершине этого треугольника
Обозначим треугольник АВС
Если треугольник равнобедренный, и 1 угол при основании известен(25), то 2 угол при этом же основании будет 25 градусов
Далее: 180-(25+25)=130 - 3 угол - вершина.
Ну и там нужно либо:
360-130=230
Либо: 180-130=50