пусть ad> bc , тогда острые углы равные 75 и 15 гр лежат при оснований ad , положим что y,w середины сторон ab и cd соответственно , тогда yw средняя линия трапеции , значит ad+bc=2yw из условия мы знаем что yw равна либо 15 либо 7 , положим что ab и cd пересекаются в точке e , тогда aed=180-(75+15)=90 , положим также что z,x это середины сторон основании bc,ad соотвественно , пусть n точка пересечения yw и zx , тогда по замечательному свойству трапеции точки e,z,x лежат на одной прямой , учитывая что угол aed прямой , получаем что ax=ex=ad/2 , ez=bz=bc/2 , но так как ex=ez+zx откуда окончательно получаем две системы
{ad-bc=2*7
{ad+bc=2*15
или
{ad-bc=2*15
{ad+bc=2*7
подходит решение первой системы , так как они положительны , складывая получаем ad=22 , bc=8 , значит ответ bc=8.
1) v = sосновние * h
площадь основания вычислим по формуле герона:
в данном случае:
р = (3 + 5 + 7) / 2 = 7,5 см.
тогда sоснования:
√(7,5 * 4,5 * 2,5 * 0,5) = √675 / 4 см(квадрат).
высота призмы:
h = 8 * sin 60° = 4 * √3 см.
тогда объем призмы:
v = √675 / 4 * 4 * √3 = √2025 = 45 см(куб)
2)строим пирамиду abcdm.
м- вершина пирамиды.
объем равен одной третей площади основания на высоту.
с треугольника мос по теореме пифагора:
ом= корень квадратынй из(мс*квадрат) -ос(
о- точка пересечения диагоналей,
ос= 0.5ас=2 см, ом= корень квадратный из(4(квадрат)-2(квадрат))=верень квадратный из(16-2)=корень квадратный из 12=2корень квадратный из 3
площадь основания равна квадрату его стороны.
ав=вс=х.
с треугольника авс по теореме пифагора:
ав(квадрат)+вс(квадрат)=ас(квадрат), х*+х*=16, 2х*=16, х*=8 - это площадь основания пирамиды
v=1/3 .8 . 2корень квадратный из 3 =16корень квадратный из 3/3=16/корень квадратный из 3 сантиметров кубических
(*-это степень 2)
Поделитесь своими знаниями, ответьте на вопрос:
Втрапеции abcd (ad и bc основания) диагонали пересекаются в точке o saod=32cм в квадрате sboc=8см в квадрате найдите меньшое основания трапеции.если большее из них равен 10см
Треугольники AOD и BOC - подобные, так как углы BOC и AOD - равны как вертикальные, BC||AD - по условию задачи и два остальных угла BCO и OAD, CBO и ODA треугольников тоже равны, как лежащие между параллельными сторонами и получаем подобие треугольников за равными тремя углами.
Площади подобных треугольников относятся как квадраты их линейных размеров, то есть
SAOD/SBOC=(AD)^2/(BC)^2
32/8=100/(BC)^2
(BC)^2=8*100/32=25
BC=5