
1)cosa=5\13; тогда
sin^2a = 1-(5\13)^2 = sina = корень из (1-(5\13)^2 )= корень из (144\169) =12\13
sina=12\13
тогда ctga= cosa\sina = (5\13)\(12\13)=5\12
и tga= sina\cosa = (12\13)\5\13=12\5
2)
sin²α + cos²α = 1
sin²α = 1 - cos²α = 1 - (15/17)² = 1 - 225/289 = 64/289
sinα = √(64/289) = 8/17
tgα = sinα : cosα = 8/17 : (15/17) = 8/15
ctgα = 1/tgα = 15/8
3)по тригонометрическим формулам:
формули за которыми будем решать
sin²a+cos²a=1
tg a=sin a/cos a
ctg a-cos a/ sin a
решаем:
сначала найдем cos a
sin² a+cos² a=1
cos²a=1-sin²a
coa²a=1 -(0.8)²
cos²a=1-0.64
cos ² a=0.36
cos a=√0.36
cos a= 0.6
найдем tg
tg=sin a/ cos a
tg=0.8/0/6≈1.333333≈4/3
tg=4/3
ctg=cos a/ sin a
ctg=0.6 / 0.8≈3/4
Объяснение:
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²
Поделитесь своими знаниями, ответьте на вопрос: