Если угол ADF=90°-то ADB тоже 90°. Следует что BD - высота. Если D середина основания, тогда BD еще и медиана.
Доказательство:
Рассмотрим ∆ ADC и ∆ BDC.
1) ∠ADC=∠BDC=90º
2) AD=CD (так как BD — медиана треугольника ABC по условию).
3) Сторона BD — общая.
Следовательно, ∆ ADC = ∆ BDC (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон: AB=BC. Значит, ∆ ABC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
2) По аналогии с первым.
3) 18 (48-15-15)
1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
ответ 1. 100; 2. -100; 3. 0
Поделитесь своими знаниями, ответьте на вопрос:
Боковые стороны равнобедренной трапеции при их продолжении пересекаются под прямым углом. найти все стороны трапеции, если её площадь равна 12 см², а высота равна 2 см. 50 . за спам !
В прямоугольном тр-ке АЕД углы при основании равны, значит он равнобедренный с острыми углами 45°.
S(АЕД)=АД²/4=а²/4,
S(BCД)=ВС²/4=b²/4,
S(АВСД)=S(АЕД)-S(BCД),
12=a²/4-b²/4,
a²-b²=48.
S(АВСД)=h(a+b)/2 ⇒ a+b=2S(АВСД)/h=2·12/2=12 см.
b=12-a.
a²-(12-a)²=48,
а²-144+24а-а²=48,
24а=192,
а=8.
АД=8 см, ВС=b=12-8=4 см.
В равнобедренной трапеции АМ=(a-b)/2=(8-4)/2=2 см.
В тр-ке АВМ АВ²=АМ²+ВМ²=2²+2²=8,
АВ=СД=√8=2√2 см.
ответ: 8 см, 2√2 см, 4 см и 2√2 см.