porotikova1004
?>

Много ! ! найдите угол, образованный хордой ав, длина которой равна радиусу окружности, и касательной, проходящей через точку а?

Геометрия

Ответы

ирина Альбертовна
Вспомним свойство касательной :
Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания(образует 90*).
Проведем из центра окружности О два радиуса в точки А и В , у нас получился равносторонний треугольник ОАВ - все углы по 60*. 
Обозначим на касательной для удобства две точки К и С,как показано на рисунке( они расположены в противоположных сторонах от точки А).
∠ОАК =90*
∠ОАВ=60*
∠ВАК=∠ОАК -∠ОАВ
 ∠ВАК=90*-60*
∠ВАК=30*
Мы нашли угол, образованный хордой АВ, длина которой равна радиусу окружности, и касательной, проходящей через точку А.
Но хорда АВ и касательная КС также образуют ∠ОАС, найдём его.
∠ОАС и ∠ВАК это смежные углы, их сумма 180*
∠ОАС= 180*-∠ВАК  
 ∠ОАС= 180*-30*
∠ОАС= 150*
 
 
Много ! ! найдите угол, образованный хордой ав, длина которой равна радиусу окружности, и касательно
Natalya1895
Площадь треугольника АСD по формуле Герона:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны.
В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14.
S=(1/2)*h*AD, отсюда высота  треугольника АСD равна
h=2S/AD=(2√14)/3.
Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3.
Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3.
По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна
S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1.
ответ: S=26√14/9 ≈ 12,1.

Найдите площадь равнобедренной трапеции, у которой большее основание равно 6 см, боковая сторона 3 с
Юрьевна174
АВСА1В1С1 - усечённая пирамида.
Предложенное сечение - трапеция с основаниями, равными высотам, проведённым в основаниях пирамиды. АМ - высота в тр-ке АВС, ВМ=МС. А1М1 - высота в тр-ке А1В1С1 В1М1=С1М1.
Высота в прямоугольном тр-ке вычисляется по ф-ле h=а√3/2
АМ=8√3·√3/2=12.
А1М1=4√3·√3/2=6.
АММ1А1 - трапеция. Её площадь: S=(a+b)h/2=(АМ+А1М1)h/2 ⇒ 
h=2S/(АМ+А1М1)=2·54/(12+6)=6.
Площадь правильного тр-ка: S=a²√3/4.
S1=(8√3)²·√3/4=48√3.
S2=(4√3)²·√3/4=12√3.
Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3
V=6(48√3+√(48√3·12√3)+12√3)/3=2(48√3+24√3+12√3)=168√3.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Много ! ! найдите угол, образованный хордой ав, длина которой равна радиусу окружности, и касательной, проходящей через точку а?
Ваше имя (никнейм)*
Email*
Комментарий*