Так как по условию задачи осевым сечением конуса является прямоугольный треугольник, то, соответственно, угол при вершине данного треугольника равен 90° Значит гипотенуза является основанием треугольника и диаметром основания конуса:
D = 10 см по условию задачи.
Проведем в треугольнике высоту, перпендикулярную основанию конуса. Высота разбивает треугольник на два одинаковых прямоугольных треугольника. Если угол при вершине равен 90°, то углы в основании треугольника будут по 45° Значит высота треугольника H равна радиусу основания: Н = R = D/2 = 10/2 = 5 см
Найдем объём конуса:
V = 1/3 πR²H = 1/3 π5²*5 = 125 π/3 см³
ответ: 125 π/3 см³
Так как по условию задачи осевым сечением конуса является прямоугольный треугольник, то, соответственно, угол при вершине данного треугольника равен 90° Значит гипотенуза является основанием треугольника и диаметром основания конуса:
D = 10 см по условию задачи.
Проведем в треугольнике высоту, перпендикулярную основанию конуса. Высота разбивает треугольник на два одинаковых прямоугольных треугольника. Если угол при вершине равен 90°, то углы в основании треугольника будут по 45° Значит высота треугольника H равна радиусу основания: Н = R = D/2 = 10/2 = 5 см
Найдем объём конуса:
V = 1/3 πR²H = 1/3 π5²*5 = 125 π/3 см³
ответ: 125 π/3 см³
Поделитесь своими знаниями, ответьте на вопрос:
r= a/√3 = 6√2/√3
расстояние от центра шара до основания
H/2=√(6.5^2-(6√2/√3)^2)=√18.25
высота призмы
H=√73
Sосн = √3/4 а^2 = √3/4* 72=18√3
обьем призмы = Sосн*H = 18√3*√73= 18√219