Объяснение:
Дано: ABCD - трапеция.
АС∩BD=M
AD=DM
∠ABD=∠CBD
Доказать: ∠BAD>60°; AB>BC.
Доказательство:
1. ∠1=∠2 (условие)
∠1=∠3 (накрест лежащие при AD║BC и секущей BD)
⇒∠2=∠3.
2. Рассмотрим ΔABD.
∠2=∠3 (п.1) ⇒ ΔABD - равнобедренный ⇒AB=AD
3. Рассмотрим ΔAМD
AВ=МD (условие)
AB=AD (п.2) ⇒ ΔAМD - равнобедренный
⇒∠4=∠5 (при основании р/б Δ)
4.Рассмотрим ΔAВD - равнобедренный.
Предположим, что ∠ВAD=∠2=∠3=60°, то ΔAВD был бы равносторонним.
Это неверно, так как BD>AB=AD (AB=AD=MD; BD=MD+MB)
⇒BD - большая сторона ΔAВD⇒ ∠ВAD > 60°.
Против большей стороны в треугольнике лежит больший угол.
5. ∠4=∠5 (п.3)
∠4=∠6 (накрест лежащие при ВС║AD и секущей АС)
⇒∠5=∠6.
6. ∠5=∠2+∠7 (внешний, ΔАВМ)
⇒∠5>∠7 или ∠6>∠7.
7. Рассмотрим ΔАВС.
∠6 >∠7 ⇒ АВ > BC.
Против большего угла в треугольнике лежит большая сторона.
ответ: 4 ) 4) 2(√3+√15+3) .
Объяснение:
ABCA₁B₁C₁ - пряма призма ; ΔАВС - прямокутний ( ∠С = 90°) , ∠АВС = 30°;
∠САС₁ = 60° ; S (AA₁B₁B) = 8√3 ; S б(С₁АВС) - ?
Нехай АС = а , тоді АВ = 2а ( бо ∠В = 30° ) .
sin60° = CC₁/AC₁ ; CC₁ = AA₁ = AC₁sin60° =2a√3/2 = a√3 .
S (AA₁B₁B) = 8√3 =AB*AA₁ = 2a *a√3 ;
2a²√3 = 8√3 ; a² = 4 ; a = 2 ( a > 0 ) ; CC₁ = AA₁ = 2√3 .
Із прямок. ΔВСС₁ : ВС = АВ*cos30° = 2a * √3/2 = a√3 = 2√3 ;
BC₁ = √( CC₁² + BC²) =√ ( (2√3)² + (2√3)²) = 2√6 .
S б(С₁АВС) = S (ΔACC₁) + S (ΔBCC₁) + S (ΔABC₁) ;
S (ΔACC₁) = 1/2 *2*2√3 = 2√3 ; S (ΔBCC₁) = 1/2* (2√3)² = 6 ;
ΔABC₁ - рівнобедрений ( АС₁ =АВ =4 ) , ВС₁ = 2√6 . Знайдемо висоту АМ ,
проведену до ВС₁ : МВ = 1/2 * 2√6 = √6 ;
АМ = √( 4² - ( √6 )²) = √ 10 . Отже , S (ΔABC₁) = 1/2 *2√6 *√ 10 =√60 =2√15 .
Підставляємо : S б(С₁АВС) = 2√3 + 6 +2√15 = 2( √3 + √15 + 3 ) .
Поделитесь своими знаниями, ответьте на вопрос:
Начерти окружность с центром в точке о проведите диаметры ав и сд так чтобы угол вос был прямой проведите ходы ас св вд да с транспортера найдите градусный меру каждого из углов между
Смотри скан
АВ⊥СD; OA=OB=OC=OD⇒ треугольники АОС, СОВ, ВОD и АОD равнобедренные и равны между собой. Если прямоугольные треугольники равнобедренные, то углы у основания у них равны (180-90)/2=45°
Рассмотрим ∠АСВ=∠АСО+∠ОСВ=45+45=90°
Анологично рассматриваются углы CBD, ADB и CAD
Таким образом доказано, что углы между хордами прямые