Обозначим медиану АМ, биссектрису ВК.
ВК⊥АМ и пересекает ее в т.Н.
ВН является высотой ∆ АВМ.
Высота и биссектриса совпадают ⇒треугольник АВМ равнобедренный, ВМ=АВ
Длины сторон треугольника ABC — последовательные целые числа (дано).
Примем сторону АВ=х, АС=х+1, ВС=х+2
Тогда СМ=х+2-х=2
Т.к. АМ медиана, то ВМ=СМ=2, ⇒
ВС=4, АВ=ВМ=2, АС=2+1=3
Предположим, что большей является сторона АС. Тогда АВ=1, ВС=2, АС=3; это противоречит теореме о неравенстве треугольника (3=1+2). Следовательно, АВ=2, АС=3, ВС=4
Периметр АВС=2+3+4=9 (ед. длины)
Поделитесь своими знаниями, ответьте на вопрос:
Расстояние от любой вершины треугольника ABC до центра O равно R= a√3/3, где а - сторона треугольника.⇒ AO=a√3/3
Высота треугольника h (ABC) = a√3/2, где а - сторона треугольника.
h (ABC) составляет 3/4 высоты пирамиды (SO)
h(АBC) = 3/4 * SO
SO = 4/3 * h (ABC) = 4/3 * a√3/2 = 2*a√3/3
Рассмотрим прямоугольный треугольник AOS. Угол AOS=90 град, тк SO - высота. Ребро пирамиды AS - гипотенуза, SO и AO - катеты.
Тангенс искомого угла SAO равен отношению противолежащего катета SO к прилежащему катету AO
2*a√3/3
tg(SAO) = = 2
a√3/3
что приблизительно соответствует углу 63°30' (по таблице Брадиса)⇒ такой прямоугольный треугольник существует