Olia72
?>

Высота основания правильной тре- угольной пирамиды составляет три четверти высоты пирамиды. найдите тангенс угла между боковым ребром и плоскостью основания пирамиды.

Геометрия

Ответы

Vladimir-Tamara1359
Пусть SABC - правильная треугольная пирамида с вершиной S. В оновании данной пирамиды лежит правильный (равносторонний) треугольник ABC. Высота пирамиды SO опущена в центр основания - центр треугольника ABC, который также является центром описанной окружности с радиусом R. 
Расстояние от любой вершины треугольника  ABC до центра O равно R= a√3/3, где а - сторона треугольника.⇒ AO=a√3/3
Высота треугольника h (ABC) = a√3/2, где а - сторона треугольника.
h (ABC) составляет 3/4 высоты пирамиды (SO)
h(АBC) = 3/4 * SO
SO = 4/3 * h (ABC) = 4/3 * a√3/2 = 2*a√3/3
Рассмотрим прямоугольный треугольник AOS. Угол AOS=90 град, тк SO - высота. Ребро пирамиды AS - гипотенуза, SO и AO - катеты. 
Тангенс искомого угла SAO равен отношению противолежащего катета SO к прилежащему катету AO

                      2*a√3/3
tg(SAO) = = 2
                         a√3/3 

что приблизительно соответствует углу 63°30' (по таблице Брадиса)⇒ такой прямоугольный треугольник существует
lubavarif83

Обозначим медиану АМ, биссектрису ВК. 

ВК⊥АМ и пересекает ее в т.Н. 

ВН является высотой ∆ АВМ. 

Высота и биссектриса совпадают ⇒треугольник АВМ равнобедренный,  ВМ=АВ

Длины сторон треугольника ABC — последовательные целые числа (дано). 

Примем сторону АВ=х,  АС=х+1, ВС=х+2

Тогда СМ=х+2-х=2

Т.к. АМ медиана, то ВМ=СМ=2,  ⇒

ВС=4, АВ=ВМ=2, АС=2+1=3

Предположим, что большей является сторона АС.  Тогда АВ=1, ВС=2, АС=3; это противоречит теореме о неравенстве треугольника (3=1+2). Следовательно, АВ=2, АС=3, ВС=4

 Периметр АВС=2+3+4=9 (ед. длины)

vitaldicky349
Правильная призма — это прямая призма, основанием которой является правильный многоугольник (в нашем случае - квадрат). Боковые грани правильной призмы — равные прямоугольники (в нашем случае стороны этих прямоугольников равны а и 2а). Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник со сторонами, равными высоте призмы (2а) и диагонали основания (в нашем случае а√2, так как по Пифагору d=√(a²+a²)).
Таким образом, площадь диагонального сечения нашей призмы равна Sд=2а*а√2=2а²√2 ед².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Высота основания правильной тре- угольной пирамиды составляет три четверти высоты пирамиды. найдите тангенс угла между боковым ребром и плоскостью основания пирамиды.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Inforealto
АндреевичЮлия
Alenachernika9111
gamolml
сергей1246
vera-classic75
frdf57
syana80
marketing601
Елена Васильева839
sanhimki47
алексей_Цуканов
bestform
kronid12
olkay