Для начала найдём все углы: <A - <B/2; <B = <C-30.
Объявим угол <A — как переменную "x", угол B объявим как: 2x, угол C объявим как: 2x+30.
<A = x
<B = 2x
<C = 2x+30
x+2x+2x+30 = 180°
5x+30 = 180°
5x = 150° ⇒ x = 150/5 = 30° ⇒ <A = 30°
<B = 30*2 = 60°
<C = <B+30 = 90°.
Как мы видим, наш треугольник ABC — прямоугольный, так как имеет один прямой угол(<C).
AB — гипотенуза, известный нам катет — BC.
Катет BC — лежит напротив угла A(30°).
Теорема 30-градусного угла в прямоугольном треугольнике такова: катет, протолежащий углу 30-и градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: BC = AB/2; BC = 2 ⇒ AB = 2*2 = 4.
Вывод: AB = 4.
Боковая поверхность - 3 трапеции, средняя линяя у каждой из трех - 4;
2 из них - с высотой 1;
грань, "противоположная" ребру длинны 1, - это равнобедренная трапеция, её высоту и надо вычислить, чтобы получить ответ.
проводим "вертикальную" плоскость через ребро 1, делящую основания "пополам" (то есть эта плоскость проходит через высоты оснований пирамиды, выходящие из вершин ребра 1).
сечение пирамиды, которое получится - это трапеция с боковой стороной 1, перпендикулярной основаниям, и основаниями 3*sqrt(3)/2 и 5*sqrt(3)/2. четвертая сторона легко вычисляется, и равна 2. Это и есть высота наклонной грани трапеции (поскольку сечение перпендикулярно основаниям пирамиды);
ответ S = 4*1+4*1+4*2 = 16
Поделитесь своими знаниями, ответьте на вопрос:
цилиндр