Объяснение:
ЗАДАЧА 6
ДАНО: ∆АВС прямоугольный, <С=90°, <А=60°, АС=4
НАЙТИ: АВ
РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°, поэтому <В=90–60=30°
Катет АС, лежащий напротив него равен половине гипотенузы, поэтому гипотенуза АВ=2×4=8
ОТВЕТ: АВ=8
ЗАДАЧА 7
ДАНО: ∆АВС - прямоугольный, <С=90°, АС=ВС, СД=6
НАЙТИ: АВ
Если АС=ВС, то этот треугольник равнобедренный, а высота СД, проведённая из вершины прямого угла также является медианой и биссектрисой, а медиана, проведённая из вершины прямого угла равна половине гипотенузы, поэтому СД=½АВ или АВ =2СД=2×6=12
ОТВЕТ: АВ=12
ЗАДАЧА 8
ДАНО: ∆ АВС - прямоугольный, <А:<В=2:1, АВ=14, <С=90°
НАЙТИ: АС
РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°. Обозначим пропорции 2:1 как 2х и х и составим уравнение:
2х+х=90
3х=90
х=90÷3=30°
Итак: угол В=30°, тогда угол А=2×30=60°
Так как АС лежит напротив угла 30°, то АС=½АВ=½×14=7
ОТВЕТ: АС=7
ЗАДАЧА 9
ДАНО: ∆АВС прямоугольный: <С=90°, АС=ВС=10, АМ=СМ, МР перпендикулярно АС.
НАЙТИ: МР
РЕШЕНИЕ: МР делит катет АС пополам, поэтому АМ=СМ=10÷2=5.
МР является средней линией ∆АВС и если МР перпендикулярно АС, тогда он будет параллелен ВС. По свойствам средней линии треугольника МР=½ВС=½×10=5.
Можно также использовать средней линии, так как она является средней линией в равнобедренном треугольнике, а наш треугольник АВС именно равнобедренный, то МР отсекает от ∆АВС треугольник АРМ подобный ∆АВС. Поэтому ∆АРМ также является равнобедренным, у которого катеты АМ=РМ=5
ЗАДАЧА 10
ДАНО: ∆АВС - прямоугольный, <С=90°, <А=30°, ВК - биссектриса <В=8
НАЙТИ: АС
Так как сумма острых углов прямоугольного треугольника составляет 90°, то <В в ∆АВС=90–30=60°. Поскольку ВК - биссектриса, то она делит <В пополам поэтому <СВК=<АВК=60÷2=30°
Рассмотрим ∆АВК. В нём <АВК=<А=30°, из чего следует что ∆АВК - равнобедренный, поэтому ВК=АК=8
Рассмотрим ∆СВК. Он прямоугольный, и ВС и СК - катеты, а ВК - гипотенуза. В нём <СВК=30°, а катет СК, лежащий напротив него равен половине гипотенузы ВК, поэтому СК=½×ВК=8÷2=4
Итак: АК=8, СК=4.
Тогда АС=СК+АК=4+8=12
ОТВЕТ: АС=12
Задание пространственных фигур уравнения и и неравенствами.
Шар
x^2 + y^2 + z^2 <= R^2
Для сферы (поверхности шара) будет равенство. Также и в остальных.
Эллипсоид
x^2/a^2 + y^2/b^2 + z^2/c^2 <= 1
Конус
x^2/a^2 + y^2/b^2 - z^2/c^2 <= 0
Однополостный гиперболоид
x^2/a^2*+ y^2/b^2 - z^2/c^2 <= 1
Двуполостный гиперболоид
x^2/a^2 + y^2/b^2 - z^2/c^2 <= - 1
Эллиптический параболоид
x^2/p + y^2/q <= 2z
Гиперболический параболоид
(x-x0)/√p = (y-y0)/(+-√q) = (z-z0)/(x0/√p -+y0/√q)
Это незамкнутая поверхность, поэтому здесь только равенство.
Эллиптический цилиндр
x^2/a^2 + y^2/b^2 <= 1
Гиперболический цилиндр
x^2/a^2 - y^2/b^2 = 1
Параболический цилиндр
x^2 = 2py
Уравнения плоскости.
Общее уравнение плоскости
Ax + By + Cz + D = 0
Нормальное уравнение
cos a*x + cos b*y + cos c*z - p = 0
Здесь a, b, c - это углы альфа, бета и гамма. Должно выполняться условие:
cos^2 a + cos^2 b + cos^2 c = 1.
Уравнение в отрезках
x/a + y/b + z/c = 1
Здесь a, b, c - это отрезки, которые плоскость отсекает на осях.
Если плоскость проходит через О(0; 0; 0), то её этим уравнением задать нельзя.
Поделитесь своими знаниями, ответьте на вопрос:
Sos! кто хорошо знает . угол между диагоналями равнобедренной трапеции равен 70гр. найдите угол между основанием и диагональю трапеции.