r=4 см
Объяснение:
Дано: АС - диаметр окружности, точка В лежит на окружности, ВМ⊥АС, СМ=АМ+4.
Найти: r.
Рисунок к задаче смотри в прикрепленном файле.
Пусть АМ=х, тогда МС=х+4.
ΔАВМ прямоугольный, т.к. ВМ⊥АС (по условию).
По теореме Пифагора найдем ВМ.
Проведем отрезок ВС. ΔАВС прямоугольный, т.к. вписан в окружность и одна его сторона является диаметром окружности.
ВМ - высота, проведенная из вершины прямого угла к гипотенузе - вычисляется как корень квадратный из произведения длин отрезков, на которые высота поделила гипотенузу.
Мы получили два разных выражения, при которых можно найти длину отрезка ВМ. Поскольку результат у них будет одинаковый, приравняем их.
По теореме Виета x₁=-4, х₂=2.
х=-4 - посторонний корень (т.к. длина отрицательной быть не может).
АМ=2, МС=2+4=6.
АС=АМ+МС=2+6=8
ответ: r=4 см.
Поделитесь своими знаниями, ответьте на вопрос:
Втеругольнике abc угол c прямой, ac=6, угол b равен 60°. найдите ab, bc, угол a
Катет, лежащий против ∠30° равен 1/2 гипотенузы, отсюда:
ответ: ∠А=30°; АВ=4√3; ВС=2√3