25) Диагонали параллелограмма точкой пересечения делятся пополам, BO=OD=4. Параллелограмм, в котором диагональ является биссектрисой - ромб. ABCD - ромб, диагональ BD также является биссектрисой, угол между диагоналями прямой.
ADO=120/2=60
В треугольнике AOD катет OD лежит против угла 30 и равен половине гипотенузы AD.
AD=2OD =4*2 =8
P(ABCD)= 8*4 =32
24) Противоположные стороны параллелограмма равны, AB=CD=KD, △KDC - равнобедренный, DKC=DCK.
DKC=BCK=31 (накрест лежащие при параллельных)
D= 180-2*31 =118
№49: DK = 2
№50: MD = 16
Объяснение:
№49:
Т.к. ABCD - параллелограмм, AB || CD, то есть AB || CK. Тогда BK - секущая при параллельных прямых. Следовательно, ∠ABK=∠BKC, как накрест лежащие углы при параллельных прямых. Рассмотрим треугольник BCK: ∠CBK=∠BKC (∠ABK=∠CBK, по условию, а ∠ABK=∠BKC), следовательно, треугольник BCK равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть BC = CK = 8 (по условию). BC = CD + DK, CD = AB = 6 (по свойству параллелограмма), тогда DK = BC - CD = 8 - 6 = 2.
№50:
Т.к. ABCD - параллелограмм, BC || AD, то есть BC || MD. Тогда CM - секущая при параллельных прямых. Следовательно ∠BCM=∠CMA, как накрест лежащие углы при параллельных прямых.. Рассмотрим треугольник CAM: ∠CMA=∠MCA (∠MCA = ∠BCM по условию, а ∠BCM=∠CMD), следовательно, треугольник CAM равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть AM = AC = 10 (по условию). MD = AM + AD, BC = AD = 6 (по свойству параллелограмма), тогда MD = AM + AD = 10 + 6 = 16.
Поделитесь своими знаниями, ответьте на вопрос:
Косинус острого угла прямоугольной трапеции равен 3/корень из 13. найдите её большее основание, если меньшее основание равно высоте и равно 24.
Пусть данная трапеция АВСD, отрезок СН – её высота. Так как АВСD прямоугольная трапеция, ВА⊥АD и СН⊥АD. ⇒ АВ=СН. По условию ВС=СН, ⇒ АВСН - квадрат. АН=ВС=СН=24. Косинус угла есть отношение катета, прилежащего углу, к гипотенузе. cos∠D=HD:CD
Примем коэффициент отношения НD:СD равным а. Тогда НD=3а, СD=а√13. Из прямоугольного ∆ СНD по т.Пифагора СН²=СD²-НD² 576=13а²-9а² ⇒ а=12, а НD=3а=36. Большее основание АD=AH+HD=24+36=60 (ед. длины).
Или:
СD=СН:sin∠D. Из основного тригонометрического тождества sin∠D=√(1-cos*D)=√(1-9/13)=2/√13 Гипотенуза СD=24:(2/√13)=12√13, откуда HD=CD•cos∠D=12√13•3:√13=36. Основание АD=24+36=60 (ед. длины)