nikitamihailov22095010
?>

Один из внешних углов равнобедренного треугольника=110° найти углы этого треугольника напишите с пояснением

Геометрия

Ответы

lena260980
Есть два решения:
1) Один из углов при основании смежный с внешним равен 180-110=70 градусов
Угол 2ой при основании тоже 70 градусов, оставшийся угол равен 180-70-70=40 градусов
2) Угол из вершины(не при основании) смежный с внешним равен 70 градусов
Два при основании угла равны (180-70):2= 110:2=55 градусов
zaalmix
Обозначим длину стороны AB за x (x ≥ 0). Вспомним формулу нахождения описанной около треугольника окружности через произведение сторон и площадь
R = \frac{AB \cdot BC \cdot AC}{4S_{\Delta ABC}}

\frac8{\sqrt{15}} = \frac{3 \cdot 4 \cdot x}{4S}
\frac8{\sqrt{15}} = \frac{3 \cdot x}{S}
8S=3x\sqrt{15}

Найдем площадь треугольника по формуле Герона
S=\sqrt{p(p-AB)(p-AC)(p-BC)}, где p=\frac{AB+AC+BC}2

p=\frac{3+4+x}2=\frac{7+x}2

S=\sqrt{\frac{7+x}2(\frac{7+x}2-3)(\frac{7+x}2-4)(\frac{7+x}2-x)}=
=\sqrt{\frac{7+x}2\cdot\frac{1+x}2\cdot\frac{x-1}2\cdot\frac{7-x}2}=\sqrt{(\frac72+\frac x2)(\frac72-\frac x2)(\frac x2+\frac12)(\frac x2-\frac12)}=
\sqrt{(\frac{49}4-\frac{x^2}4)(\frac{x^2}4-\frac14)}=\frac14\sqrt{(49-x^2)(x^2-1)}

Подставим получившееся значение в первое уравнение
8\cdot\frac14\sqrt{(49-x^2)(x^2-1)}=3x\sqrt{15}
2\sqrt{(49-x^2)(x^2-1)}=3x\sqrt{15}
(2\sqrt{(49-x^2)(x^2-1)})^2=(3x\sqrt{15})^2
4(49-x^2)(x^2-1)=9x\cdot15
196x^2-196-4x^4+4x^2=135x
200x^2-196-4x^4=135x
4x^4-65x^2+196=0

Замена x^2=t,\ t \geq 0

4t^2-65t+196=0
D=65^2-4\cdot4\cdot196=4225-3136=1089=33^2
t_1=\frac{65+33}{2\cdot4}=12,25
t_2=\frac{65-33}{2\cdot4}=4

Вернемся к замене
1)\ x^2=12,25
x=\pm3,5
2)\ x^2=4
x=\pm2
x \geq 0 \Rightarrow x \in \{3,5;\ 2\}

Найдем больший угол треугольника по теореме косинусов
1) Стороны: 3; 4; 3,5
\[A{C^2} = B{C^2} + A{B^2} - 2 \cdot BC \cdot AB \cdot \cos \angle B\]
4^2 = 3,5^2 + 3^2 - 2 \cdot 3,5 \cdot 3 \cdot \cos \angle B

16 = 12,25 + 9 - 21\cos \angle B

21\cos \angle B=5,25

\cos \angle B=0,25
Значит ∠B < 90° ⇒ ΔABC - остроугольный. 

2) Стороны: 3; 4; 2
\[A{C^2} = B{C^2} + A{B^2} - 2 \cdot BC \cdot AB \cdot \cos \angle B\]
4^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos \angle B
16 = 4 + 9 - 12\cos \angle B
12\cos \angle B =-3&#10;
\cos \angle B =-0,25&#10;
Значит ∠B > 90° ⇒ ΔABC - тупоугольный. 

По условию треугольник тупоугольный, значит AB = 2, а P = 3 + 4 + 2 = 9

ответ: 9
schernov
№1
1. Каждый катет является средним пропорциональным между гипотенузой и проекцией этого катета на гипотенузу.Получаем
ВА^2=AH*AC
BA^2=2*(8+2)=2*10=20
BA= \sqrt{20} =[tex] 2\sqrt{5}
2. Аналогично, BC^2=HC*AC
BC^2=8*(8+2)=8*10=80
BC=\sqrt{80} =\sqrt{4*4*5}=4 \sqrt{5}
Sпр=2 \sqrt{5} * 4 \sqrt{5}=2*4*5=40 (см2)
ответ: 40см2
№3
1. Опустим высоту на сторону ВС. Получим прямоугольный треугольник, в котором угол В=30. А т.к. в прям. треугольнике напротив угла в 30 градусов лежит катет равный половине гипотенузы, получаем, что DH=7см
2. Sпар.=DH*BC=7*8=56(cм2)
ответ: 56см2

1. найти площадь прямоугольника авсд если перпендикуляр опущеный с вершины в на диагональ ас делит е
1. найти площадь прямоугольника авсд если перпендикуляр опущеный с вершины в на диагональ ас делит е

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Один из внешних углов равнобедренного треугольника=110° найти углы этого треугольника напишите с пояснением
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Tsibrova
larson96
necit12
gunel1988alieva
parolmm
olimov
luxoutlet
alvs9
cheremetdiana
beliaeva2
Vyacheslavovich1431
Yevgenevich_Chipura-Nikolaeva
Serkova_Elena251
Avdeeva Inga1505
motor2218