карпова581
?>

Угол между высотой и биссектрисой, проведенными из вершины прямого угла прямоугольного треугольника, равен 8 градусам. найдите острые углы треугольника.

Геометрия

Ответы

Анатольевич-Митюшин
Пусть треугольник АВС с прямым углом С. Биссектриса СК делит угол 90° пополам. Высота СН делит треугольник на два прямоугольных треугольника, в одном из которых острый угол при вершине С равен
45°+8°=53°, а второй 45°-8°=37° Значит в этих треугольниках вторые острые углы равны 37° и 53° соответственно, так как сумма острых углов в прямоугольном треугольнике равна 90°.
ответ: острые углы треугольника АВС равны 37° и 53°.
dokurova634
Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9.
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.
marinarodina90
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Угол между высотой и биссектрисой, проведенными из вершины прямого угла прямоугольного треугольника, равен 8 градусам. найдите острые углы треугольника.
Ваше имя (никнейм)*
Email*
Комментарий*