Прямая призма - это призма, у которой боковые ребра перпендикулярны основанию.
Т.к. в основании лежит четырехугольник, то он может быть либо прямоугольником, либо параллелограммом, либо - трапецией (ромбом и квадратом быть не может, т.к. стороны основания не равны по условию).
Если в основании лежит трапеция, то данных задачи не хватает и решить ее нельзя.
Поэтому будем считать, что в основании прямоугольник или параллелограмм, у которых противоположные стороны равны - в этом случае задача решается однозначно.
Площадь боковой поверхности вычисляют по формуле
Sбок = Pосн · h, где Pосн - периметр основания, h - высота призмы.
Т.к. в основании призмы четырехугольник (мы выяснили - прямоугольник или параллелограмм), то его периметр находят по формуле Росн = 2(а + b), где a и b - стороны четырехугольника.
Поэтому Sбок = 2(3 + 4) · 6 = 2 · 7 · 6 = 84 (cм²).
Площадь полной поверхности призмы находят по формуле
Sполн = 2Sосн + Sбок.
В случае, если в основании лежит параллелограмм, то не хватает данных для нахождения площади параллелограмма.
Если же в основании лежит прямоугольник, то Sосн = ab, где a и b - его стороны.
Поэтому Sполн = 2 · 3 · 4 + 84 = 24 + 84 = 108 (см²).
Поделитесь своими знаниями, ответьте на вопрос:
1)окружность с центром в точке о касается сторон угла а в точках в и с. расстояние между точками а и о в два раза больше радиуса окружности и ровно 12 см. найдите градусную меру угла а
csc(A)=2
arcsc(2)=
=30°.