Конычева-музей"260
?>

Вравнобедренном треугольнике def (df=ef) от вершины f отложены равные отрезки fm и fk (рис. 40 доказать, что угол dme = углу dke

Геометрия

Ответы

Verdievruslan
Естественно, что равные отрезки FM и FK отложены на сторонах FD и FE, которые равны по условию (других вариантов просто нет). Значит отрезок КМ параллелен отрезку DE. Следовательно, треугольник FMK подобен треугольнику FED, то есть является равнобедренным. Углы при основании равнобедренного треугольника равны: <FKM=<FMK. Значит равны и смежные с этими углами углы: <DKM=<ЕMК.
Треугольники DKM и ЕМК равны по двум сторонам и углу между ними (ЕМ=KD, так как DF=EF и FM=FK, a MK - общая). 
В равных треугольниках против равных сторон лежат равные углы, то есть <DMK=<EKM. Тогда и <DKE=<DME, как разность равных углов:
<DKE=<DKM-<EKM и <DME=<EMK-<DMK.
Что и требовалось доказать.
Вравнобедренном треугольнике def (df=ef) от вершины f отложены равные отрезки fm и fk (рис. 40). док
foto5113161
Удивительно, но эта такая сложная по формулировке задача решается в одно действие.
Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С;
Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C;
а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых).
а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :)
Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны.
Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.
av52nazarov

Трапецию обозначим АВСД, АД//ВС. Из вершины С опустим высоту СМ, а из вершины В опустим высоту ВК. Тогда КМ=ВС=5,  АК=МД=(13-5)/2=4,  а АМ=АД-МД=13-4=9. По условию АС перпендикулярно СД, значит треугольник АСД прямоугольный и угол АСД=90.Из прямого угла опущена высота СМ. По свойству высоты, опущенной из прямого угла, её квадрат равен произведению отрезков гипотенузы, на которые эту гипотенузу делит основание высоты.То есть  СМ^2=AM*MD,  CM^2=9*4=36, CM=6. Из треугольника СМД по теореме Пифагора найдем СД.  СД^2=CM^2+MД^2=36+16=52, CД=√52.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вравнобедренном треугольнике def (df=ef) от вершины f отложены равные отрезки fm и fk (рис. 40 доказать, что угол dme = углу dke
Ваше имя (никнейм)*
Email*
Комментарий*