Борисов
?>

1)дана окружность s радиуса 2 с центром в точке (-4 , 5 найдите центр и уравнение окружности, в которую переходит окружность s при параллельном переносе вдоль оси oy на -0, 5 на 2, 3 на -5 2)в какой параллелограмм переходит параллелограмм с вершинами а(1, 1), в(4, 2), с(5, 3), d(2, 2) при параллельном переносе: а) на -2 вдоль оси oy б) на 2 вдоль оси ox

Геометрия

Ответы

Larisaodinets5
Уравнение исходной окружности
(x+4)^2 + (y-5)^2 = 2^2
перенос по y
на -0,5
(x+4)^2 + (y-4,5)^2 = 2^2
на 2,3
(x+4)^2 + (y-7,3)^2 = 2^2
на -5
(x+4)^2 + (y)^2 = 2^2
vera-sherepa231

1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.

АВ=ВС=10 см

Проведем высоту ВН

Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.

Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.

Теперь по теореме Пифагора находим катет ВН

ВН=корень из(АВ^2-АН^2)

ВН=корень из(64)

ВН=8см

Sтреугольника АВС=(ВН*АС)/2

S=(8*12)/2

S=48 кв. см

ответ:48 кв.см.

2)параллелограмм ABCD 

Проведём из угла В на AD высоту BK. 

∆ABK-прямоугольный. ےА=30° 

Следовательно BK=AB:2, как катет, лежащий против угла 30° 

AB=12. Тогда BK=6; S=16×6=96 кв.см.

ответ:96 кв.см.

3)Дано:

АВСD-трапеция,

АВ=СD=13 см.

АD=20см

ВС=10см

Найти:S

Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см

Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН

ВН=корень из(АВ^2-AH^2)

ВН=корень из(169-25)

ВН=12 см.

S=((АD+ВС)/2)*ВН

S((20+10)/2)*12=180 кв.см.

ответ:180 кв.см

Подробнее - на -

Объяснение:

chernova1exei862

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180°.

1) BC || AD

∠BCA = ∠CAD — накрест лежащие

2) a || b

накрест лежащие углы равны, сумма односторонних равна 180°

3) m || n

m и n ⊥ k — они уже являются параллельными, но, к дополнению, равны и соответственные углы и сумма односторонних 180°, т.к. все углы по 90°.

4) MN || KP

∠NOM = ∠KOP как вертикальные ⇒ ΔMNO равен ΔPKO по первому признаку равенства треугольников (две стороны и угол между ними)

Пары углов (∠N = ∠K) и (∠M = ∠P) — как накрест лежащие

5) SR || PT

SR и PT ⊥ SP — они уже являются параллельными, но, к дополнению, ∠S = ∠P = 90°, ∠SMR = ∠PMR как вертикальные ⇒ ΔSRM равен ΔPTM по второму признаку равенства треугольников (сторона и два прилегающих угла) .

∠R = ∠T — как накрест лежащие

6) d || e

равны соответствующие углы (по 40° и 140°), и сумма односторонних равна 180° (140+40).

7) RS || MQ, RM || SQ

отрезок MS — общий для ΔSRM и ΔMQS. Данные треугольники равны по первому признаку равенства треугольников:

∠RSM = ∠QMS — как накрест лежащие при RS || MQ

∠RMS = ∠QSM — как накрест лежащие при RM || SQ

8) m || n

равны соответствующие углы (по 36° и 144°), и сумма односторонних равна 180° (144+36).

9) a || b

равны накрест лежащие углы (по свойству биссектрисы угла и равнобедренного треугольника)

10) PQ || MN, PM || QN

отрезок PN — общий для ΔPQN и ΔNMP. Данные треугольники равны по первому признаку равенства треугольников:

∠QPN = ∠MNP — как накрест лежащие при PQ || MN

∠QNP = ∠MPN — как накрест лежащие при PM || QN

11) BA || DC

∠BEA = ∠CED как вертикальные ⇒ ΔBEA равен ΔCED по первому признаку равенства треугольников (две стороны и угол между ними)

Пары углов (∠EDC = ∠EAB) и (∠EBA = ∠ECD) — как накрест лежащие

12) m || n

равны накрест лежащие углы (по свойству биссектрисы угла и равнобедренного треугольника)

13) MS || FQ

MS — биссектриса ∠NMQ. Угол ∠NMQ — внешний для вершины M равнобедренного треугольника MFQ. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним ⇒ ∠MFQ = ∠MQF = ∠NMS = ∠SMQ.

∠SMQ = ∠MQF — как накрест лежащие

14) BC || AD, BA || CD

Пары углов (∠BOA = ∠DOC) и (∠BOC = ∠DOA) как вертикальные ⇒ ΔBOA равен ΔDOC и ΔBOC = ΔDOA по первому признаку равенства треугольников.

∠OBC = ∠ODA и ∠OCB = ∠OAD — как накрест лежащие при BC || AD

∠OBA = ∠ODC и ∠OAB = ∠OCD — как накрест лежащие при BA || CD

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1)дана окружность s радиуса 2 с центром в точке (-4 , 5 найдите центр и уравнение окружности, в которую переходит окружность s при параллельном переносе вдоль оси oy на -0, 5 на 2, 3 на -5 2)в какой параллелограмм переходит параллелограмм с вершинами а(1, 1), в(4, 2), с(5, 3), d(2, 2) при параллельном переносе: а) на -2 вдоль оси oy б) на 2 вдоль оси ox
Ваше имя (никнейм)*
Email*
Комментарий*