Використовуємо формулу довжини кола, щоб знайти її радіус:
C = 2πr, де C - довжина кола, π ≈ 3,14, r - радiус кола.
Підставляємо
8π = 2πr
r = 8π/2π = 4
Використовуємо формулу описаного кола близько правильного n-кутника:
де r - радіус вписаного кола, R - радіус описаного кола, n - число кутів правильного n-кутника (трикутника)
Підставляємо
Використовуємо формулу для сторони правильного трикутника
a₃ = R√3, где a₃ -
сторона трикутника, R - радiус описаной кола
Підставляємо
a₃ = 8√3
Звідси периметр трикутника:
P = 8√3 * 3 = 24√3 (в правильному трикутнику всі сторони рівні)
Відповідь: P = 24√3
Задача:
Длина окружности, вписанной в правильный треугольник, равна 12π см. Найдите периметр треугольника.
Чтобы найти периметр правильного Δ, нужно знать сторону; что найти сторону, нужно найти радиус вписанной окружности.
Дня нахождения радиуса окружности, воспользуемся формулой длины окружности и выразим из нее радиус:
Теперь воспользуемся формулой радиуса вписанной окружности в правильный треугольник для нахождения стороны Δ:
Осталось за малым — периметр правильного треугольника:
Периметр треугольника равен 36√3 см.
Поделитесь своими знаниями, ответьте на вопрос:
Две паралельные прямые пересечены третьей прямой, при этом получилось8 углов, и односторонние углы относятся как 4: 8.найдите полученные углы
4х + 8х = 180
12х = 180
х=15 - 1 доля углов
1 угол - 4 доли 4*15=60
2 угол - 8 долей 8*15 = 120
4 Угла по 60 градусов, 4 угла по 120 градусов