Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Г)
LO=ON=LN:2=3:2=1,5
КО=ОМ=КМ:2=2:2=1
Рассмотрим треугольник КLO:
<KOL=90°,т.к диагонали рамба перпендикулярны,значит квадрат гипотенузы КL равен:
КL^2=LO^2+KO^2=1,5^2 +1^2=2,25+1=3,25
KL=корень из 3,25=примерно 1,8
2)АВС -равнобедренный треугольник,значит ВН- не только биссектриса(дано по условию-рисунку),но высота и медиана треугольника. Медиана делит сторону ,на которую проведена,пополам,значит :
АН=НС=АС:2=4:2=2
Треугольник ВСН:
<ВНС=90°(ВН-высота,медиана и биссектриса)
ВН^2=ВС^2-НС^2=5^2-2^2=25-4=21
ВН=~4,6(приблизительно)
Поделитесь своими знаниями, ответьте на вопрос:
Впервый день айбек прочитал 36 страниц, а во второй на 9 страниц меньше.сколько всего страниц прочитал айбек