Nasteona1994
?>

Вершины четырёхугольника авсd лежат на окружности. верно ли, что

Геометрия

Ответы

jaksonj326
Углы АСD и АВD - вписанные, оба опираются на дугу AD и измеряются половиной этой дуги. Значит они равны.
rvvrps
1. Площадь параллелограмма равна 72 см², а его стороны - 12 см и 8 см. Найдите высоты параллелограмма.

Sabcd = a · h₁                       Sabcd = b · h₂
12 · h₁ = 72                            8 · h₂ = 72
h₁  = 72/12 = 6 см                h₂ = 72/8 = 9 см

2. Площадь ромба со стороной 18 см и высотой 7 см равна площади прямоугольника со стороной 14 см. Найдите периметр прямоугольника.

Sabcd = Sklmn
AD · BH = a · b
18 · 7 = 14 · b
b = 18 · 7 / 14 = 9 см
Pklmn = 2(a + b) = 2(14 +9) = 46 см

3. Найдите площадь равнобедренного треугольника, боковая сторона которого равна 15 см, а основание - 24 см.

Проведем ВН - высоту треугольника АВС. Так как треугольник равнобедренный, ВН является медианой.
АН = НС = 24/2 = 12 см

ΔАВН: ∠АНВ = 90°, по теореме Пифагора
             ВН = √(АВ² - АН²)  = √(225 - 144) = √81 = 9 см

Sabc = AC · BH / 2 = 24 · 9 / 2 = 108 см²

4. Меньшая диагональ ромба равна 12 см, а один из углов - 60°. Найдите вторую диагональ и сторону ромба.

ΔABD равнобедренный (AB = AD как стороны ромба) и ∠BAD = 60°, значит ΔABD равносторонний. Тогда АВ = AD = BD = 12 см.

По свойству параллелограмма сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма:
AC² + BD² = 4·AB²
AC² = 4·12² - 12² = 3·12²
AC = 12√3 см
 
5. Большее основание и большая боковая сторона прямоугольной трапеции равны а см, а один из углов - 60°. Найдите площадь трапеции.

AD = DC = a см, ∠ADC = 60°, значит ΔADC равносторонний.
Проведем высоту трапеции СН. Она является высотой и медианой равностороннего треугольника ADC, тогда СН = а√3/2 см, АН = НD = а/2.
СН ║ АВ (как перпендикуляры к одной прямой) и СН = АВ (как высоты трапеции), тогда АВСН - прямоугольник, значит, ВС = АН = а/2 см.
Sabcd = (AD + BC)/2 · CH = (a + a/2)/2 · a√3/2 = 3a²√3/8 см²
anton-www1
Основаниями правильной треугольной призмы ABCA1B1C1 являются равные правильные треугольники со стороной а. 
Через сторону основания AB под углом 45° к плоскости основании призмы проведено сечение, пересекающее ребро CC1.

Треугольники DAC и DBC равны по двум сторонам и углу между ними:
AC=BC (как стороны правильного треугольника)
CD - общая сторона
∠ACD = ∠BCD = 90° (т.к. призма правильная)
⇒ AD = BD 
⇒ сечение - равнобедренный треугольник с основанием AB

В прямоугольном треугольнике ACD:
∠ACD = 90°
∠DAC = 45°
∠ADC = 180 - 90 - 45 = 45 (°)
⇒ треугольник ACD - прямоугольный равнобедренный с основанием-гипотенузой AD, боковыми сторонами - катетами AC = DC = a

по теореме Пифагора:
AD² = AC² + DC²
AD² = a² + a²
AD² = 2a²
AD = a√2 (см)

В равнобедренном треугольнике ABD:
DE - высота, а также медиана и биссектриса, проведенная к основанию ⇒ AE = AB/2
AE = a/2

В прямоугольном треугольнике ADE:
Гипотенуза AD = a√2
Катет AE = a/2

По теореме Пифагора
AD² = AE² + DE²
(a√2)² = (a/2)² + DE²
DE² = 2a² - a²/4
DE² = 8a²/4 - a²/4
DE² = 7a²/4
DE = √(7a²/4)

            a√7
DE = ---------- (см)
              2

S(ABD) = 1/2 * a * DE

                   1                  a√7         a * a√7           a²√7
S(ABD) = ------- *  a  * ---------- = --------------- = ------------ (см²)
                   2                    2            2 * 2                 4

Не соответствует ни одному из вариантов ответа. 
Через сторону основания правильной треугольной призмы под углом 45 к основанию проведено сечение пер

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вершины четырёхугольника авсd лежат на окружности. верно ли, что
Ваше имя (никнейм)*
Email*
Комментарий*