По поводу третьей задачи. В условии явная ошибка. 2-мя лучами угол нельзя разделить на 4 равных угла, только на 3 угла по 40 градусов. При этом невозможно получить суммированием ни одного угла по 60 градусов. Разделить на 4 равных угла можно только 3 лучами. Исходя из этих соображений решена 3 задача.Итак, в условие 3-ей задачи введена поправка "разделена 3 лучами на 4 равных угла".
Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Угол eof равен 120°. лучами oa и ob, угол разделён на 4 равных угла. сколько углов по 60° получилось? можно полную запись