1. Признак: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм".
Стороны АВ=СD (дано). Углы ВАС и АСD равны (дано). Это накрест лежащие углы при прямых АВ и CD и секущей АС. Следовательно, эти прямые параллельны (признак). АВСD - параллелограмм по приведенному выше признаку. Что и требовалось доказать.
2. Треугольники ADB и DCB равны по двум углам (<1=<4 и <2=<3 - дано) и стороне между ними - DB - общая. В равных треугольниках против равных углов лежат равные стороны.
AD=CB, DC=AB. ABCD - параллелограмм по признаку: "Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм".
Что и требовалось доказать.
6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
Поделитесь своими знаниями, ответьте на вопрос:
Решить по 7 класс 1 дано: треугольникdbe=треугольникуaoc. известно, что de = 4, 5 см, db = 9см, уголd = 60градусов, уголb = 30градусов. найдите соответствующие стороны и углы треугольника aoc.
DE=AC=4,5см
DB=AO=9см
《D=《A=60°
《B=《O=30°