Треугольник АВС, уголА=90, точка М касание на ВС , ВМ=3, СМ=10, точка Н касание на АС,
точка Р касание на АВ
МС=СН как касательные проведенные из одной точки = 10,
ВМ = ВР=3, как касательные из одной точки,
АН=АР= а , как касательные из одной точки
АС = а + 10, АВ = 3 + а
ВС в квадрате = АВ в квадрате + АС в квадрате
169 = (а+10) в квадрате + (3+а) в квадрате
2 х а в квадрате + 26а - 60=0
а = (-26 +-(плюс. минус) корень (676 + 4 х 2 х 60)) / 2 х 2
а = (-26+- 34)/4
а =4
АС = 4+10=14, АВ=4+3=7
Площадь = 1/2АС х АВ = 1/2 х 14 х 7 =49
Поделитесь своими знаниями, ответьте на вопрос:
Найдите место центров окружностей, касающихся двух данных пересекающихся прямых а и b.
Треугольник АВС, уголА=90, точка М касание на ВС , ВМ=3, СМ=10, точка Н касание на АС,
точка Р касание на АВ
МС=СН как касательные проведенные из одной точки = 10,
ВМ = ВР=3, как касательные из одной точки,
АН=АР= а , как касательные из одной точки
АС = а + 10, АВ = 3 + а
ВС в квадрате = АВ в квадрате + АС в квадрате
169 = (а+10) в квадрате + (3+а) в квадрате
2 х а в квадрате + 26а - 60=0
а = (-26 +-(плюс. минус) корень (676 + 4 х 2 х 60)) / 2 х 2
а = (-26+- 34)/4
а =4
АС = 4+10=14, АВ=4+3=7
Площадь = 1/2АС х АВ = 1/2 х 14 х 7 =49