billl24
?>

На оси ординат найдите точку с, равноудаленную от точек а (4; −3) и в (8; 1

Геометрия

Ответы

Alisa1639
Решение смотри на фото
На оси ординат найдите точку с, равноудаленную от точек а (4; −3) и в (8; 1).
Alekseevna

Объяснение:

\displaystyle y=\frac{x^2-x+1}{x}

1. ОДЗ: х≠0;

или х ∈ (-∞; 0) ∪ (0; +∞)

2. Четность, нечетность.

\displaystyle y(-x)=\frac{(-x)^2-(-x)+1}{-x}=-\frac{x^2+x+1}{x}y(-x)\neq y(x)\neq -y(x)

⇒ функция не является четной или нечетной, то есть - общего вида.

3. Пересечение с осями.

1) х ≠ 0 ⇒ ось 0у не пересекает.

2) у = 0 ⇒

\displaystyle x^2-x+1=0D=1-4*1*1=-3

⇒ корней нет, то есть ось 0х не пересекает.

4. Асимптоты.

1) Вертикальная.

\displaystyle \lim_{x \to 0} \frac{x^2-x+1}{x}=\infty

⇒ x=0 - вертикальная асимптота.

2) Наклонная: у = kx + b

\displaystyle k= \lim_{x \to \infty} \frac{x^2-x+1}{x*x}= \lim_{x \to \infty} \frac{\frac{x^2}{x^2}-\frac{x}{x^2}+\frac{1}{x^2} }{\frac{x^2}{x^2} } =1b= \lim_{x \to \infty} \left(\frac{x^2-x+1}{x}-1*x\right)= \lim_{n \to \infty} \frac{x^2-x+1-x^2}{x}== \lim_{x \to \infty} \frac{-\frac{x}{x}+\frac{1}{x} }{\frac{x}{x} }=-1

⇒ y = x - 1 - наклонная асимптота.

5. Возрастание, убывание, экстремумы.

Найдем производную, приравняем к 0, найдем корни и отметим их на числовой оси. Определим знаки производной на промежутках. Если "+" - возрастает, если "-" - убывает.

\displaystyle y'=\frac{(2x-1)*x-(x^2-x+1)*1}{x^2} ==\frac{2x^2-x-x^2+x-1}{x^2} =\frac{x^2-1}{x^2}=\frac{(x-1)(x+1)}{x^2}x=1;\;\;\;\;\;x=-1;\;\;\;\;\;x\neq 0

\displaystyle [-1](0)[1]

Возрастает при х ∈ (-∞; -1] ∪ [1; +∞)

Убывает при х ∈ [-1; 0) ∪ (0; 1]

\displaystyle x_{max}=-1; \;\;\;y(-1)=-3x_{min}=1;\;\;\;y(1)=1

6. Выпуклость, вогнутость.

Найдем производную второго порядка.

\displaystyle y''=\frac{2x*x^2-(x^2-1)*2x}{x^4}=\frac{2x^3-2x^3+2x}{x^4}==\frac{2}{x^3}

\displaystyle x\neq 0

Найдем знак второй производной на промежутках. Если "+" - вогнута, если "-" - выпукла.

\displaystyle (0)

Выпуклая при х ∈ (-∞; 0)

Вогнутая при х ∈ (0; +∞)

Строим график.


очень Нужно сделать исследование функции и построить график
Seid-ZadeNadezhda1769
В трапеции АРСD    средняя линия равна полусумме оснований.
Значит, РС+AD=2·15
РС+25=30
РС=5 

ВС=ВР+РС
25=ВР+5
ВР=25-5=20

∠PAD=∠BPA  - внутренние накрест лежащие при параллельных ВС и AD и секущей АР.
∠ВАР=∠РАD - биссектриса АР делит угол А пополам.

Значит ∠BPA  =∠ВАР  и треугольник АВР - равнобедренный АВ=ВР=20

Противоположные стороны параллелограмма равны   CD=AB=20

Из треугольника АСD  по теореме косинусов:
АС²=AD²+DC²-2·AD·DC·cos ∠D    
(5√46)²=25²+20²-2·25·20·cos ∠D 
1150=625+400-1000·cos ∠D 

cos ∠D =-0,125

Противоположные углы параллелограмма равны
∠В=∠D

Из треугольника АBP по теореме косинусов:
АP²=AB²+BP²-2·AB·BP·cos ∠B
АP²=20²+20²-2·20·20·(-0,125)

АP²=400+400+100

АP²=900
AP=30

Р( трапеции АРСD)= АР+РС+СD+AD=30+5+20+25=80 


ответ. Р=80

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На оси ординат найдите точку с, равноудаленную от точек а (4; −3) и в (8; 1
Ваше имя (никнейм)*
Email*
Комментарий*