ΔАВС- равнобедренный.Пусть АВ=ВС =а. ВЕ⊥ АС=10 см, DC⊥АВ=12 см. Найти R окр.,описанной около Δ СDB. ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы) S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1) S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2) Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3) Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ² х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100 Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒ 5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000 а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4
oskon008
17.03.2021
Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Окружность с центром в точке a(2; -4) проходит через точку в(-3; 1 напишите уравнение этой окружности