expo3217
?>

КТО ЗНАЕТ ГЕОМ Один із кутів прямокутної трапеції дорівнює 45°. Обчисліть площу даної трапеції, якщо її основи дорівнюють 4 см і 8 см.​​

Геометрия

Ответы

vrn3314

АВС - прямоугольный тр-ник, угол В прямой, АС - гипотенуза. ВМ - медиана.

Медиана делит сторону, к которой она проведена, пополам. Значит АМ = МС.

В прямоугольном тр-нике медиана, проведенная к гипотенузе, равна ее половине, т.е.

ВМ = ВМ = СМ = 10 см, тогда гипотенуза АС = 20 см.

Медиана ВМ делит прямой угол в отношении 1 : 2, значит

угол АВМ = 90 : 3 * 2 = 60 градусов

угол СВМ = 90 - 60 = 30 градусов.

Тр-ник АМВ - равнобедренный, поскольку АМ = ВМ, АВ - основание.

Углы при основании равны, т.е. угол МАВ = МВА = 60, тогда угол АМВ = 180 - 60 * 2 = 60.

Значит тр-ник АМВ равносторонний, АВ = 16 см.

Меньшая средняя линия параллельна меньшей стороне (АВ) и равна ее половине, т.е. 8 см.

proh-dorohova5244
Пусть из точки А провели две наклонные АВ и АС  к прямой а. Расстояние от точки А до прямой а=ВС равно 16 см , тогда длина перпендикуляра АН, опущенного из точки А на прямую ВС = 16 см.
Так как наклонные образуют углы в  30° и в 60°, то пусть ∠АВС=60°,
а ∠АСВ= 30°. 
Треугольник АВС получится прямоугольным, т.к. ∠А=180°-30°-60°=90°.
Рассм. ΔАВН: ∠АНВ=90°, АН=16 см,  
  Наклонная АВ=АН:sin∠АВН=16:sin60°=16:(√3/2)=32:√3=(32√3)/3 .
  Проекция наклонной АВ равна ВН.
         BH=AH:tg60°=16:√3=(16√3)/3 .
Рассм. ΔАСН:  ∠АНС=90° , АН=16 см,
  Наклонная  АС=АН:sin30°=16:(1/2)=32 /
  Проекция наклонной АС равна СН.
            СН=АН:tg30°=16:(√3/3)=(16*3):√3=16√3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

КТО ЗНАЕТ ГЕОМ Один із кутів прямокутної трапеції дорівнює 45°. Обчисліть площу даної трапеції, якщо її основи дорівнюють 4 см і 8 см.​​
Ваше имя (никнейм)*
Email*
Комментарий*