ftyh6
?>

− Чем является точка пересечения биссектрис углов треугольника? (Центром окружности.)

Геометрия

Ответы

МихайловнаМетельков328

Точка пересечения биссектрис треугольника является центром вписанной окружности

yurievaalxndra55
Острый угол между диагоналями прямоугольника равен φ. Найти угол между диагональю прямоугольника и его большей

Дано:

ABCD — прямоугольник,

AC ∩ BD=O,

∠AOD=φ.

Найти: ∠ACD.

Решение:



1) ∠DOC=180º-∠AOD=180º-φ (как смежные).

ugol mezhdu diagonalyami pryamougolnika raven

2) Треугольник COD — равнобедренный с основанием CD

(OC=OD по свойству диагоналей прямоугольника).

Тогда

\[\angle OCD = \frac180}^o} - \angle AOD}}{2} = \frac180}^o} - ({{180}^o} - \varphi )}}{2} = \]

\[ = \frac180}^o} - {{180}^o} + \varphi }}{2} = \frac{\varphi }{2}.\]

(как угол при основании равнобедренного треугольника).

\[\angle ACD = \angle OCD = \frac{\varphi }{2}.\]

ответ: φ/2.



ugol mezhdu diagonalyu i storonoy pryamougolnika

Около любого прямоугольника можно описать окружность. Центр описанной около прямоугольника окружности — точка пересечения его диагоналей.

∠ACD — вписанный угол, ∠AOD — соответствующий ему центральный угол. Следовательно,

∠ACD=½ ∠AOD=φ/2.

Задача 2. (обратная к задаче 1)

Угол между диагональю прямоугольника и его большей стороной равен α. Найти меньший угол между диагоналями прямоугольника.

ugol mezhdu diagonalyu i storonoy pryamougolnika

1) Треугольник COD — равнобедренный с основанием CD

(так как OC=OD по свойству диагоналей прямоугольника).

Угол при вершине равнобедренного треугольника

∠COD=180º-2∠OCD=180º-2α.

2) ∠AOD=180º-∠COD (как смежные),

∠AOD=180º-(180º-2α)=180º-180º+2α=2α.

ответ: 2α.

Вывод: острый угол между диагоналями прямоугольника в два раза больше угла между диагональю прямоугольника и его большей стороной.
AndreevManaeva
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2.
Высота пирамиды - это высота равнобедренного 
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.

Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.

Отсюда  площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.

Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.

Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

− Чем является точка пересечения биссектрис углов треугольника? (Центром окружности.)
Ваше имя (никнейм)*
Email*
Комментарий*