△АВС и △DEF.
AB = DE
BC = EF
∠BAC = ∠EDF
Найти:дополнительное условие, при котором △АВС = △DEF
Решение:Обратим внимание, почему изначально △АВС не равен △DEF:
Если две стороны и угол МЕЖДУ ними одного треугольника соответственно равны двум сторонам и углу МЕЖДУ ними другого треугольника, то такие треугольники равны.
К ∠ВАС прилежит только 1 сторона, а именно АВ. А сторона ВС к этому углу вообще никак не относится.
Тоже самое и с ∠EDF: к нему прилежит только сторона DE, а EF к нему вообще никак не относится.
Поэтому эти треугольники с изначальными условиями не равны.
Начнём рассматривать приусловия по порядку:
1. ∠ВАС - острый.=> ∠EDF тоже острый, так как ∠ВАС = ∠EDF, по условию.
Но это нам ничего не даёт.
Всё по прежнему остаётся на своих местах, то есть мы не сможем доказать равенство этих треугольников.
2. ∠ВАС - прямой.=> ∠EDF тоже прямой, так как ∠ВАС = ∠EDF, по условию.
И это многое нам даёт.
Во-первых, △АВС и △DEF - прямоугольные.
Рассмотрим эти треугольники:
АВ = DF, по условию.
ВС = EF, по условию.
=> △АВС = △DEF, по катету и гипотенузе
У прямоугольных треугольники с другие признаки равенства.
3. ВАС - тупой.Мы знаем, что тупоугольный треугольник = 1 тупой угол + 2 острых угла.
Но нас ничего не даёт, для того, чтобы доказать равенство треугольников.
4. ∠ВСА - острый.Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.
Просто ∠ВСА - острый, а ∠EFD может быть тупым или может даже прямым.
5. ∠ВСА - прямой.Во-первых, мы не сможем доказать равенство, так как нам не сказано, что ∠ВСА = ∠EFD.
Во-вторых, нам не сказано, что ∠EFD - прямой.
=> ∠EFD совершенно любым.
6. ∠ВСА - тупой.Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.
Просто ∠ВСА - тупой, а ∠EFD может быть острым или может даже прямым.
7. АВ > ВС.Это нам, опять же, ничего не даёт.
8. АВ < ВСАВ < ВС, но это нам ничего не даёт.
Всё по прежнему останется.
ответ: 2).Поделитесь своими знаниями, ответьте на вопрос:
с домашним заданием Написать с дано
Объяснение:
1) a) C1D
b) AB + AD + AA1 = AB + BC + CC1 = AC + CC1 = AC1
c) B1C - AD = B1C - B1C1 = C1C
d) |DC1|² = 32 + 32 = 64
|DC1| = 8
2) а) ВА + ВС + ВВ1 + D1A = BA
б) BB1 + CD + A1D1 + D1B = BB (здесь как не заменяй вектора, получается ВВ)
а) AB + CC1 + A1D1 + C1A = AA (тоже самое)
б) AB + AA1 + AD + C1D = AD
3) а) CC1 = AA1 ÷ 12см
СВ = DA = 8 см
СD = BA = 9 см
б) |DC1|² = DD1 + D1C1 = DD1 + DC = 144 + 81 = 225
|DC1| = 15 см
|DB|² = DA + AB = 81 + 64 = 145
|DB| = корень из 145
|DB1|² = AD + BB1 = AD + DD1 = 144 + 64 = 208
|DB1| = 4 корень 13