Пусть M – середина большей боковой стороны CD прямоугольной трапеции ABCD с основаниями BC < AD , N – середина меньшей боковой стороны AB , а треугольники BCM , AMB и AMD – равнобедренные. По теореме о средней линии трапеции MN || BC , и т.к. AB BC , то MN AB . Медиана MN треугольника AMB является его высотой, значит, этот треугольник равнобедренный, причём < BAM = < ABM . Угол BCD – тупой, значит, это угол при вершине равнобедренного треугольника BCM Обозначим < CBM = < CMB = ? . Тогда
< BCM = 180o - 2?, < ADC = 180o - < BCM = 180o-(180o - 2?)=2?,
< BMN = < MBC = ?, < AMB = 2 < BMN = 2?,
< AMD = 180o - < BMC - < AMB = 180o-3?, < DAM = < AMN = ?.
Предположим, что AD=DM . Тогда < DAM = < AMD , или ? = 180o-3? , т.е. 2? = 90o , что невозможно. Пусть теперь AM=MD . Тогда < DAM = < ADM , или ? = 3? , т.е. ? = 0o , что также невозможно. Если же AD = AM , то
< ADM= < AMD , или 180o-3?= 2? , откуда находим, что ? = 36o . Следовательно, < ADC = 2? = 72o .
ответ: 72o .
Геометрия
7 класс
Урок № 13
Равнобедренный треугольник
Перечень рассматриваемых вопросов:
Понятие равнобедренного, равностороннего треугольника.
Формулировка и доказательство теоремы о свойствах равнобедренного треугольника.
Признак равнобедренного треугольника.
Измерения и вычисления в равнобедренном треугольнике.
Тезаурус:
Биссектриса угла треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.
Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.
Равнобедренный треугольник – треугольник, у которого две стороны равны.
Равносторонний треугольник – треугольник, у которого все стороны равны.
Любой равносторонний треугольник является равнобедренным, обратное не верно.
Основная литература:
Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
Дополнительная литература:
Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Вы уже познакомились с такими понятиями как треугольник, рассмотрели его виды.
Рассмотрим такие виды треугольников: как равнобедренные и равносторонние, более подробно. Начнём с описания равнобедренного треугольника. Но для начала, дадим ему определение.
Треугольник называется равнобедренным, если две его стороны равны.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Вкаком треугольнике всё высоты пересекаются в одной из вершин