Соединим центр О окружности с концами хорды АВ. ОА=ОВ=R.
Треугольник АОВ - равнобедренный. Проведем высоту ОН этого треугольника.
Угол ОНВ=углу ОНА=90º
«Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один»
Следовательно, и к середине хорды можно провести только один перпендикуляр.
Высота ОН - медиана равнобедренного треугольника.
АН=ВН. Точка Н - середина АВ.
Следовательно, ОН, проходящий через середину АВ, есть срединный перпендикуляр хорды АВ, ч.т.д.
Поделитесь своими знаниями, ответьте на вопрос:
8 задание. Хорды АВ и АС проведены в окружности под углом 90 градусов. Хорда АВ соответствует дуге в 80 градусов. Какой дуге соответствует хорда АС?9 задание. На окружности с центром в точке О лежат вершины треугольника СМК так, что делят окружность на дуги СМ, МК, КС в отношении 7:5:6 соответственно. Найти углы треугольника КОС
2) Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
3) Серединный перпендикуляр к хорде проходит через центр окружности.
4) Равные хорды удалены от центра окружности на равные расстояния.
5) Хорды окружности, удаленные от центра на равные расстояния, равны.
6) Окружность симметрична относительно любого своего диаметра.
7) Дуги окружности, заключенные между параллельными хордами, равны.
8) Из двух хорд больше та, которая менее удалена от центра.
9) Диаметр есть наибольшая хорда окружности.
2.Замечательное свойство окружности. Геометрическое место точек M, из которых отрезок AB виден под прямым углом (AMB = 90°), есть окружность с диаметром AB без точек A и B. 3.Свойство серединных перпендикуляров к сторонам треугольника. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника. 4.Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде. 5.Центр окружности, описанной около прямоугольного треугольника — середина гипотенузы. Это нужно запомнить и знать.Окружность симметрична относительно центра и относительно любого своего диаметра.