Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=3√2), боковые ребра SА=SВ=SС=SД=5. Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO- это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани (равнобедренного ΔSАВ), она же и медиана, и биссектриса.
SК=√(SA²-AK²)=√(5²-(3√2/2)²)=√(25-4,5)=√20,5
Из прямоугольного ΔSKО:
SО=√(SК²-OK²)=√((√20,5)²-(3√2/2)²)=√20,5-4,5=√16=4
Площадь основания Sосн=АВ²=3√2²=18
Периметр основания Р=4АВ=4*3√2=12√2
Площадь боковой поверхности
Sбок=P*SK/2=12√2*√20,5 /2=6√41
Площадь полной поверхности
Sполн=Sбок+Sосн=6√41+18
Объем
V=Sосн*SO/3=18*4/3=24
Подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
відрізки АМ і ВК-пенпердикулярний до прямої МК а відрізок АВ перетинає пряму МК у точці О доведіть що трикутник АОМ=трикутник ВОК якщо АМ=ВК
60 градусов = (1х+3х)/2
где 1 и 3 - заданные условием задачи части; х - градусная мера 1 части.
Отсюда
х= 60*2/4 = 30 градусов - это градусная мера меньшей дуги АС
30 градусов *3 = 90 градусов - это градусная мера большей дуги ДВ
Проверяем правильность решения:
На дугу в 30 градусов опирается вписанный угол В, который равен = 1/2 дуги АС равной 30 => угол В = 15
На дугу в 90 градусов опирается угол В = 1/2 дуги ДВ равную 90 =>
угол Д = 45
Следовательно сумма углов треугольника АОВ = 45+15+120 =180, где О центр пересечения хорд
Задача решена
ответ: градусная мера дуг, заключенных между сторонами угла 60 градусов равна 30 и 90 градусам.