Дана прямоугольная трапеция, меньшее основание которой равно 7 см. Меньшая боковая сторона равна 14 см, а большая боковая сторона образует с основанием ∡45°. Найди площадь трапеции.
1. Углы при основании равнобедренного треугольника равны. Значит углы треугольника пропорциональны числам 2:2:5 или 2:5:5. Если х- одна часть, то для решения задачи составим уравнения 2х+2х+5х=180 или 2х+5х+5х =180. 9х=180 12х=180 х=20 х=15 углы 40°,40°,100° углы 30°,75°75°.
2. Сумма внешних углов многоугольника,взятых по одному при каждой вершине, равна 360°. Значит, третий из внешних углов равен 360-200=160°. Угол, смежный с ним, 20°. Второй острый угол равен 90-20 = 70°. ответ: углы треугольника 20°,70°,90.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дана прямоугольная трапеция, меньшее основание которой равно 7 см. Меньшая боковая сторона равна 14 см, а большая боковая сторона образует с основанием ∡45°. Найди площадь трапеции.
Дано: ΔАВС - прямокутний, ∠А=90°, АС=30 см, ВС=34 см; МК⊥ВС, ВМ=МС. Знайти МК.
Знайдемо АВ за теоремою Піфагора:
АВ=√(ВС²-АС²)=√(1156-900)=√256=16 см.
Проведемо ВК і розглянемо ΔВКС - рівнобедрений, тому що ВМ=СМ і МК⊥ВС, отже ВК=КС.
Нехай АК=х см, тоді КС=ВК=30-х см.
Знайдемо АК з ΔАВК - прямокутного:
АВ²=ВК²-АК²; 16² = (30-х)² - х²; 256=900-60х+х²-х²;
60х=900-256=644; х=10 11/15 см. АК=10 11/15 см, тоді
ВК = 30 - 10 11/15 = 19 4/15 = 289/15 см.
Знайдемо МК за теоремою Піфагора з ΔВМК, де ВМ=34:2=17 см.
МК²=ВК²-ВМ²=(289/15)² - 17² = (83521/225) - 289 = 18496/225.
МК=√(18496/225)=136/15=9 1\15 см.
Відповідь: 9 1/15 см.