Александр
?>

Впараллелограмме abcd биссектриса острого угла bcd пересекает сторону ad в точке m, а продолжение стороны ab в точке k, km: kc = 2: 3 а) докажите, что треугольники kam и cdm подобны б) найдите стороны параллелограма abcd, если его периметр равен 48 см

Геометрия

Ответы

nnbeyo

А) Треугольники АКМ и МDС подобны по первому признаку подобия (по равенству углов КСD и ВКС при пересечении параллельных прямых ВК и СD и вертикальных углов АМК И ВМД).

Б) АМ:МД как 2:3. Треугольник СМД - р/б, т. к. См у нас биссектриса => СД=АВ=3х

Периметр у нас, (a+b)*2, т. е.:

3х+3х+5х+5х=48

16х=48

х=3

АД=5х=15

АВ=3х=9


Впараллелограмме abcd биссектриса острого угла bcd пересекает сторону ad в точке m, а продолжение ст
membuksdk

Чертёж смотрите во вложении.

Дано:

Четырёхугольник ABCD - прямоугольник.

DB - диагональ = 20.

∠DBC = 30°.

Найти:

\frac{S(ABCD)}{\sqrt{3} } = ?

Проведём ещё одну диагональ АС. Точку пересечения АС и DB назовём О.

Прямоугольник - это тоже параллелограмм. Диагонали параллелограмма точкой пересечения делятся пополам. А так как ещё по свойству прямоугольника равны, то ВО = OD = AO = OC. Следовательно, ΔВОС - равнобедренный.

Рассмотрим ΔВОС - равнобедренный (ВО и ОС - боковые стороны). ∠ОВС = ∠ОСВ = 30°, так как прилегают к основанию. Рассмотрим ∠ODC - внешний для ΔВОС - равнобедренный. Следовательно, равен сумме углов не смежных с ним. То есть, ∠ODC = ∠ОВС +∠ОСВ = 30°+30° = 60°.

Площадь четырёхугольника равна половине произведения его диагоналей и синуса угла между ними.

S (ABCD) = 0,5*AC*DB*sin (∠ODC)

sin (60°) = (√3)/2.

AC = DB = 20.

То есть -

S (ABCD) = 0,5*20*20*\frac{\sqrt{3} }{2} \\\\S (ABCD)=100\sqrt{3}

\frac{S(ABCD)}{\sqrt{3} } = \frac{100\sqrt{3} }{\sqrt{3} } =100

ответ: 100 (ед²).
В прямоугольнике диагональ равна 20, а угол между ней и одной из сторон равен 30°. Найдите площадь п
Tkachenko1050

Відповідь:

1) 6\sqrt{3} см4 2) 18\sqrt{2} см; 3)MN=12\sqrt{3} (см); 4.12√3(см); 5. ∠1=30°, ∠2= 60°, катет= 12√3 см;  6. 64/√3≈37.6 cм; 7. 20/√3≈11,5 см 8. 4 см і 4√3 см.

Пояснення: с- гіпотенуза, а і b- катети

1.Інший кут(протилежний до заданого)катета=180°-(90°+30°)=60°  за теоремою синусів прилеглий катет а =12*sin 60°=12*√3/2=6 √3(см)

2. коли кут = 45°, то інший кут теж рівен 45°- трикутник рівнобедрений,

с²=2а².c=\sqrt{2*18^2}=18\sqrt{2}(см)

3. за теоремою синусів : \frac{KM}{sin 30}=\frac{MN}{sin 60}; \\ 12*\frac{\sqrt{3} }{2}=MN*\frac{1}{2}     /*2

MN=12\sqrt{3} (см)

4. як у першій задачі катет=24*sin 60°=24*√3/2=12√3(см)

5. якщо у прямокутному Δ, катет= 1/2 гіпотенузи, то це катет, що лежить проти кута в 30°.

відповідь: ∠1=30°, ∠2= 60°, катет= 12√3 см.

6. За властивостями ромба : його діагоналі є бісектрисами кутів, у точці перетину ділять себе навпіл, та є перпендикулярні одна до другої. Так як один з кутів 120°, то поділений діагоналю навпіл= 120°:2=60°., трикутник утворений цією діагоналлю буде рівностороннім, так як протилежні кути в ромбу рівні, а сума усіх кутів Δ=60°. Друга напівдіогональбуде висотою цього трикутника( бо діагоналі утворюють між собою  прямий кут) Знайдемо сторону ромбу , с²=8²+(с/2)²

4с²-с²=64*4; 3с²=256.c= \sqrt{256/3} =\frac{16}{\sqrt{3} }

P=4*16/√3=64/√3≈37.6 cм

7.  за теоремою Піфагору знайдемо сторону в утвореному висотою прямокутному трикутнику с²=10²+ (с/2)²;3с²=400. с= √( 400/3)=20/√3≈11,5 см

8.  Діагоналі ромба ділять його на 4-ри прямокутних трикутники, які попарно рівні. Так як діагоналі ромба є його бісектрисами,то утворені трикутники мають кути 30°,60°,90°. тоді менша гіпотинуза = 2*2= 4см, а більша 2√3*2=4√3 см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Впараллелограмме abcd биссектриса острого угла bcd пересекает сторону ad в точке m, а продолжение стороны ab в точке k, km: kc = 2: 3 а) докажите, что треугольники kam и cdm подобны б) найдите стороны параллелограма abcd, если его периметр равен 48 см
Ваше имя (никнейм)*
Email*
Комментарий*