Объяснение:
Дано:
Окружность (O;r)
4-угольник ABCD - вписан в (O;r)
продолж.ВА пересек. продолж. CD в т. К.
Доказать:
∆BКС ~ ∆DКA
Доказательство:
Если 4-угольник можно вписать в окружность =>
=> сумма двух противоположных углов равна 180°:
Обозначим для удобства
Обратим внимание, что прямые КВ и КС можно расценивать как развернутые (180°) углы: уг.KAB и уг.КDC
Представив развернутые углы KAB и КDС,как сумму углов, их составляющих
(КАD + BAD и КDA + CDA соответственно) ,
выразим через них углы КAD и КDA:
А это означает, что:
Также, вследствие того что:
(по сути, АВС и КВС - это один и тот же угол,
DCA и КСА - аналогично).
Рассмотрим ∆BКС и ∆DКA:
Что и требовалось доказать.
10
Объяснение:
1) Рассчитаем соотношение длин отрезков АК и КВ гипотенузы АВ, для чего площадь треугольника СКВ (S₂) разделим на площадь треугольника АКС (S₁) :
S₂ = 1/2 · КВ · КС = 16 (площадь треугольника равна половине произведения основания на высоту)
S₁ = 1/2 · АК · КС = 4
Отношение площадей:
S₂ : S₁ = (1/2 · КВ · КС) : (1/2 · АК · КС) = КВ : АК = 16 : 4 = 4
Мы получили соотношение длин отрезков АК и КВ гипотенузы АВ:
КВ = 4 АК .
Путь АК = х, тогда КВ = 4х
2) Так как перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, то:
СК² = АК · КВ
СК² = х · 4х
СК² = 4х²
СК = √(4х²) = 2х
3) Выразим площадь треугольника АКС через х и найдём значение х (то есть длину отрезка АК):
АК = х, КС = 2х
S₁ = 1/2 · АК · КС = 4
1/2 · х · 2х = 4
2х² = 8
х² = 4
х = √4 = 2
Таким образом:
АК = 2
4) Так как КВ = 4 АК,
то КВ = 2 · 4 = 8
КВ = 8
5) АВ = АК + КВ = 2 + 8 = 10
АВ = 10
ответ: гипотенуза АВ = 10
Поделитесь своими знаниями, ответьте на вопрос:
Каждое ребро треугольной пирамиды равно а. найдите расстояние между двумя ребрами которые есть мимобежными
расстояние между скрещивающимися прямыми--это отрезок их общего перпендикуляра (HN)