план действий : 1) ищем производную;
2) приравниваем её к нулю и решаем получившееся уравнение ( ищем критические точки);
3) ставим найденные числа на числовой прямой и проверяем знаки производной на каждом промежутке;
4) пишем ответ.
Поехали?
1) у' = -2x +2
2) -2x +2 = 0
-2x = -2
x = 1
3) -∞ 1 +∞
+ -
4) ответ: при х ∈ (-∞; 1) функция возрастает
при х ∈ (1; +∞( функция убывает
Дано: треугольник прямоугольный ABC, прямоугольный треугольник ADC
AB=40
DC=14
BC=30
Вычислить : Периметр треугольника АDC
1)Рассмотрим треугольник ABC
По теореме пифагора .
с в квадрате =а в квадрате + в в квадрате
с в квадрате =40 в квадрате + 30 в квадрате=1600+900=2500
с = 50
Ас=50
2)По теореме пифагора
с в квадрате = а в квадрате + в в квадрате
в в квадрате =с в квадрате - а в квадрате
в в квадрате = 50 в квадорате - 14 в квадрате=2500-196=2304
в=48
АД=48
3)Периметр = а+б+с=14+48+50=112
ответ Периметр =112
Поделитесь своими знаниями, ответьте на вопрос:
В правильной треугольной пирамиде MABC боковое ребро = 3√2 см, а высота пирамиды = √6 см. Найдите площадь боковой поверхности пирамиды
ответ: S(бок) - 27
см²
Объяснение:
Надо вычислить апофему и сторону основания.
1. Найдем апофему.
В правильной треугольной пирамиде, высота падает на точку пересечения медиан (в центр вписанной окружности, но в этом случае он совпадает с точкой пересечения медиан и это облегчает задачу).
Найдем отрезок медианы ОВ:
ОВ^2 = MB^2 - MO^2 = 18-6 =12
Тогда ОВ = 2
см. Прямо отсюда видно, что ОМ =
В точке пересечения медиана делится в соотношении 2:1 начиная от вершины, поэтому ОВ =
ВН, отсюда ВН =
ОВ =
Значит отрезок ОМ = 4,5-3=
см
Из треугольника МОН апофема будет МН^2=OH^2 +OM^2 = 6+3 = 9
МН= 3 см
2. Найдем сторону. Медиана ВН делит сторону пополам (обозначим сторону а) . С учетом этого из прямоугольного треугольника АВН
a^2 - (a/2)^2 = BH^2 или
27, тогда а= 6 см
Площадь одной грани
S₁ = 0,5*a*BH = 0,5*6*3*
= 9
А всех трех
S(бок) = 3*S₁ = 3*9
= 27