frolevgevg6420
?>

В треугольнике ABC проведены медианы AA1 , BB1 и CC1 . Они пересекаются в точке M Вычисли множитель k , если AM−→−=kA1A−→− .

Геометрия

Ответы

platonovkosty

медианы. пересекаясь. точкой пересечения делятся в отношении 2/1, начиная от вершины. поэтому АМ/МА₁=2/1; АМ=(2/3)АА₁

АМ=(-2/3)А₁А

к=-2/3

tanysha1990
Cм. рисунок и обозначения в приложении
По теореме косинусов
(2√3)²=6²+х²-2·6·х·cos 30°
12=36+x²-6√3·x=0
x²- 6√3·x+24=0
D=108-96=12
x=(6√3-2√3)/2=2√3     или    х=(6√3+2√3)/2=4√3

если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника.
Углы параллелограмма 60° и 120°

если х=4√3
то по теореме косинусов ( α -  угол параллелограмма , лежащий против диагонали)
6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α      ⇒     36=12+48-48·cosα⇒

cosα=0,5     

α=60°
второй угол параллелограмма 120°
см. рисунок 2
ответ 120° и 60° 

Сторона параллелограмма равна 2 из корней 3см найдите его углы если диоганаль образующая с другой ст
Сторона параллелограмма равна 2 из корней 3см найдите его углы если диоганаль образующая с другой ст
Сторона параллелограмма равна 2 из корней 3см найдите его углы если диоганаль образующая с другой ст
starh
Обозначаем S(ABC) =S⇒S(BAA₁) =S/2 (т.к. AA₁ - медиана ΔABC).
S(A₁PB₁C) =S(BCB₁) - S(BA₁P) =(CB₁/CA)*S -(A₁P/A₁A)*(S/2) ,
где CB₁/CA=14/29  и  A₁P/A₁A=7/22 .

Действительно:
CB₁/AB₁=BC/BA =14/15 (свойство биссектрисы BB₁ в ΔABC)  ⇒ CB₁=14k ,AB₁ =15k ,CA=CB₁+AB₁ =29k ⇒ CB₁/CA =14/29.
---
аналогично :
A₁P/PA=BA₁/BA =7/15 (свойство биссектрисы BP в ΔABA₁)  ⇒A₁P=7m,  PA =15m , A₁A=A₁P+PA) =22m ⇒ A₁P/A₁A =7/22.

Таким образом  получили:  S(A₁PB₁C) =S*14/29 -(S/2)*(7/22).
Площадь треугольника вычисляем по формуле Герона :
 S =√p(p-a)(p-b)(p-c) =√21(21-14)(21-15)(21-13) =√21*7*6*8 = 
√(7*7*3*3*2*2*4) =7*3*4 =84.

S(A₁PB₁C) =84*(14/29) -42*(7/22) =42*7(4/29 -1/22) =21*7*59/319≈ 27,2 .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В треугольнике ABC проведены медианы AA1 , BB1 и CC1 . Они пересекаются в точке M Вычисли множитель k , если AM−→−=kA1A−→− .
Ваше имя (никнейм)*
Email*
Комментарий*