(x-2)² +(y+2)²=52
x-2=0
Объяснение:
a) Общая формула окружности
(x-a)² + (y-b)² =R² (1), где a и b соответственно абсцисса и ордината центра окружности, а R - радиус окружности.
Очевидно, что центр окружности О находится точно в середине отрезка MN. Найдем координаты О.
=((Хm+Xn)/2 ; (Ym+Yn)/2) = ( (-4+8)/2; (2+(-6))/2)= (2;-2)
Очевидно , что радиус окружности равен половине длины отрезка MN, так как MN в данном случае является диаметром окружности.
Найдем MN = sqrt ( (Xn-Xm)² + (Yn-Ym)²) = sqrt ((8-(-4))²+ (-6-2)²)=
sqrt(144+64)=sqrt(208)= 2*sqrt(52)
R= MN/2= sqrt(52)
Подставляем найденные координаты точки О и значение радиуса R=sqrt(52) в уравнение (1) . Получим:
(x-2)²+(y+2)²=52
Общее уравнение прямой Ax+By+C=0
Так как искомая прямая параллельна оси ординат, то В=0
Тогда можем записать, что х= -С/A
Нам известно, что прямая проходит через О (2;-2), т.е.
x=-C/А=2
Окончательное уравнение прямой
х=2 , либо х-2=0
a) (x-2)²+(y-1)²=25
b) (x+4)²+(y-9)²=4
c) x²+(y+2)²=4
Объяснение:
a) Общая формула окружности
(x-a)² + (y-b)² =R² (1), где a и b соответственно абсцисса и ордината центра окружности, а R - радиус окружности.
Очевидно, что центр окружности О находится точно в середине отрезка АВ. Найдем координаты О.
=((Ха+Xb)/2 ; (Ya+Yb)/2) = ( (-1+5)/2; ((-3)+5)/2)= (2;1)
Очевидно , что радиус окружности равен половине длины отрезка АВ, так как АВ в данном случае является диаметром окружности.
Найдем АВ = sqrt ( (Xb-Xa)² + (Yb-Ya)²) = sqrt ((5-(-1))²+ (-3-5)²)=
sqrt(36+64)=10
=> R=AB/2=10/2=5
Подставляем найденные координаты точки О и значение радиуса R=5
в уравнение (1) . Получим:
(x-2)²+(y-1)²=25
b) Здесь координаты центра описанной окружности уже известны, так как центром описанной окружности в равностороннем треугольнике будет являться точка пересечения его медиан О (-4;9)
Длина радиуса же равна 2/3 длины медианы.
Найдем медиану:
Длина стороны : Р:3= 6√3/3=2√3
Тогда длина медианы = 2√3*cos 60° = 2√3*√3/2=3
Тогда 2/3 медианы или радиус описанной окружности равен :
R=2/3*3=2
Подставляем найденные координаты точки О и значение радиуса R=2
в уравнение (1) . Получим:
(x+4)²+(y-9)²=4
c) Центр вписанной в квадрат окружности находится на пересечения диагоналей квадрата, которые точкой пересечения делятся пополам.
Значит нужно найти координаты точки, являющейся серединой диагонали квадрата. Мы используем диагональ АС.
Тогда координаты точки О находим по формуле:
=((Ха+Xс)/2 ; (Ya+Yс)/2) = ( (-1+1)/2; ((-3)+(-1)))/2)= (0;-2)
Радиус вписанной в квадрат окружности будет равен половине его стороны ( возьмем сторону АВ)
АВ= sqrt ( (Xb-Xa)² + (Yb-Ya)²) = sqrt ((-1-(-1))²+ (-1-(-3)²)=
=sqrt(0+16)=4
=>R=AB/2= 4/2=2
Подставляем найденные координаты точки О и значение радиуса R=2 в уравнение (1) . Получим:
x²+(y+2)²=4
Поделитесь своими знаниями, ответьте на вопрос:
Срешением полес. 1. сечение шара плоскостью, удаленной от его центра на 15, имеет площадь 64 π. найдите площадь поверхности шара. 2. сфера касается граней двугранного угла, величина которого равна α. расстояние от центра сферы до ребра двугранного угла равно l. определите радиус сферы. 3. сечение шара двумя параллельными плоскостями, которые лежат по одну сторону от центра шара, имеют площади 576π и 100π. вычислите площадь поверхности шара, если расстояние между параллельными плоскостями равно 14.
1 .
S₁= Scеч =64π ;
d =15 .
S= Sш - ?
S =4πR²
S₁=πr² =π(R² -d²) ⇒ R² =S₁/π +d² , следовательно
S =4πR²=4π(S₁/π +d²) =4S₁+4πd² =4*64π+4π*10² =4π*164= 656π.
ответ : 656π .
2 .
R =l*sin(α/2)
3 .
S₁ =576π ;
S₂ =100π ;
d =d₂ - d₁= 14
S - ?
S=4пR²
S₁ =πr₁² ; 576π=πr₁² ⇒r₁² =576 . * * * r₁ =24 * * *
S₂ =πr₂² ; 100π =πr₂² ⇒r₂²=100 . * * * r₂=10 * * *
* Радиус большего сечения равен 24, радиус меньшего сечения 10.* Расстояние от центра до большего сечения d₁=√ (R²- r₁²) , а расстояние от центра окружности до меньшего сечения d₂ =√ (R²- r₂²) .
Расстояние между плоскостями d =d₂ -d₁
√ (R²- 100) - √ (R²- 576) = 14 ;
√ (R²- 100) =14 + √ (R²- 576) ;
Решаем уравнение и получаем R²= 676.
S=4πR²=4π*676 = 27044π
ответ : 27044π.
* * * * * * * * * * * * * * * * * * * * * * * * *
√ (R²- 100) =14 + √ (R²- 576)
R² - 100 =196 +28√ (R²- 576) + R²- 576 ;
28√ (R²- 576) =280 ;
√ (R²- 576) =10 ;
R²- 576 =100 ;
R²= 676. * * * R =26 * * *
Удачи !