Площадь проекции плоской фигуры на плоскость ω равна произведению площади фигуры на косинус угла между плоскостью фигуры и плоскостью ω.
Найдём высоту проекции трапеции.
Если из конца верхнего основания провести отрезок, равный и параллельный противоположной стороне, то получим равнобедренный треугольник с боковыми сторонами по 5 см и основанием, равным 16 - 10 = 6 см.
Высота h этого треугольника равна высоте трапеции.
h = √(5² - (6/2)²) = 4 см.
Площадь проекции равна: S = ((10 + 16)/2)*4 = 52 см².
Отсюда cos a = 52/(52√2) = 1/√2 = √2/2.
Угол равен 45 градусов.
В равнобедренной трапеции диагональ является биссектрисой острого угла . Основание трапеции относится к боковой стороне как 8:5 Периметр трапеции равен 69 см найти стороны трапеции.
Объяснение:
АВСД-трапеция, АВ=СД , АД:АВ=8:5 , Р=69 см.
Тк. ВС║АД , АС-секущая , то ∠САД=∠АСД как накрест лежащие .
Тогда ΔАВС-равнобедренный по признаку ⇒АВ=ВС= 5 частей.
Поэтому СД=5 частей. Т.к. АД:АВ=8:5 , то АД= *АВ.
Пусть одна часть равна х см , тогда АВ=ВС=СД=5х , АД= *5х=8х .
Р=АВ+ВС+СД+АД , 69=5х+5х+5х+8х , х= 3 см .
АВ=ВС=СД=15 см , АД= 8см
Поделитесь своими знаниями, ответьте на вопрос:
Найдите углы четырёхугольника abcd, вписанного в окружность, если ∠adb = 62°, ∠acd = 54°, ∠cbd = 27°. если не трудно то с рисунком .
Три данных по условию вписанных угла изображены на рисунке красным.
Соответствующие им центральные углы в два раза больше.
∠CBD = 27° ⇒ ∠CОD = 54°
∠ACD = 54° ⇒ ∠AОD = 108°
∠ADB = 62° ⇒ ∠AОB = 124°
Сумма всех центральных углов вокруг точки О равна 360°, и это нам найти четвёртый центральный угол ∠ВОС
∠ВОС = 360°-54°-108°-124° = 74°
Теперь можно найти углы четырёхугольника, снова учитывая, что вписанный угол в два раза меньше центрального, опирающегося на ту же дугу.
∠ABC = 1/2(108+54) = 54+27 = 81°
∠BCD = 1/2(108+124) = 54+62 = 116°
∠CDA = 1/2(124+74) = 62+37 = 99°
∠DAB = 1/2(74+54) = 37+27 = 64°