S полн = 72 см².
Объяснение:
Площадь полной поверхности параллелепипеда равна сумме площадей всех его граней. В прямоугольном параллелепипеде все грани - прямоугольники, причем противоположные грани равны. Найдем по Пифагору диагональ основания.
АС = √(AD² + DC²) = √(6² + 3²) = √45 см. Тогда высота параллелепипеда по Пифагору:
СС1 = √(AС1² + АC²) = √(49 + 45) = 2 см.
Sabcd = 6·3 = 18 см². Sdd1c1c = 3·2 = 6см². Saa1d1d = 6·2 = 12см².
тогда Sполн = 2·Sabcd + 2·Sdd1с1с +2·Saa1d1d или
Sполн = 2·18 + 2·6 +2·12 = 36 + 12 +24 = 72 см².
Поделитесь своими знаниями, ответьте на вопрос:
P=40см ав в2раза больше ас. знайти стороны
ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса.
ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС.
ΔАВО=ΔСВО , значит АВ=ВС=2,7 см.
Периметр равен 2(2,7+2,9)=2·5,6=11,2 см.
2) Обозначим длину сторон: х; х-8: х+8; 3(х-8).
По условию:
х+х-8+х+8+3(х-8)=66,
6х-24=66,
6х=90,
х=15.
Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см.
3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85°
Значит ∠АВD =180-85-30=65°.
∠АВС=∠АВD+∠СВD=65°+65°=130°.
Проведем другую диагональ АС.
ΔАВС по условию равнобедренный: АВ=ВС.
Значит углы при основании равны (180-130):2=25°.
∠САD=85-25=60°.
Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD.
Углы четырехугольника: 95°, 50°, 130°, 85°.