Смотри прикреплённый рисунок.
а) Известно, что если стороны прямоугольного треугольника равны по 1, то по теореме Пифагора гипотенуза равна √(1² + 1²) = √2. Поэтому откладываем из одной точки по горизонтали и вертикали отрезки, равные по 1 и соединяем их концы. получаем отрезок, равный √2.
б) Известно, что tg 60° = √3. Поэтому откладываем отрезок, равный 1, по горизонтали и восстанавливаем перпендикуляр вверх. От свободной точки горизонтального отрезка раствором циркуля, равным 2 единицы делаем на перпендикуляре засечку. Длина вертикального отрезка равна √3.
Поделитесь своими знаниями, ответьте на вопрос:
рисунка. стороны треугольника касаются сферы радиуса 5 см. найдите расстояние от центра сферы до плоскости треугольника, если его стороны равны 10 см, 10 см и 12 см.
полупериметр
p=(10+10+12)/2=16 cm
Площадь
S=√(16*6*6*4) = 8*6 = 48 см²
Радиус вписанной окружности
r=S/p = 48/16 = 3 см
сфера радиусом 5 см и плоскость треугольника пересекаются по окружности радиусом 3 см
прямоугольный треугольник, гипотенуза - радиус сферы, катет - радиус вписаннанной окружности треугольника, второй катет - расстояние от центра сферы до плоскости треугольника
h²+3²=5²
-
картинка не очень, на ней синий треугольник, синяя же окружность пересечения сферы и треугольника. Красные - высота, три наклонных радиуса сферы к сторонам треугольника и три радиуса вписанной окружности треугольника.
h=4 cm