Радиус шара, в который вписан куб, вычисляется по формуле:
R=1/2·a √3, (радиус шара, равен половине диагонали куба)
Подставим значения в формулу:
9√3=1/2·а√3
а=9√3/√3*2
а=18
ответ: ребро куба равно 18
Dlyamila
09.05.2022
Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: с прямым углом , EF — биссектриса , , FG — искомый отрезок. ========== Решение: Докажем, что . 1) Так как — биссектриса, то (биссектриса делит на два равные угла). 2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ). 3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
Отсюда:
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей. Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)). Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда:
ответ: 13. ========= ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.
smirnovaL1286
09.05.2022
Пусть у меньшей окружности радиус R и расстояние от вершины угла до центра D; а у большой k*R и k*D; - ясно, что эти расстояния пропорциональны. k нужно найти из отношения площадей. Условие, что окружности касаются, означает, что k*D - D = R + k*R; то есть R/D = (k* - 1)/(k + 1); легко видеть, что R/D это синус половины угла, который надо найти, так как центры окружности лежат на биссектрисе. Что касается величины к, то её нетрудно подобрать, k^2 = 97 + 56√3; Легко видеть, что k^2 = 49 + 2*7*4√3 + 48 = (7 + 4√3)^2; то есть k = 7 + 4√3; технически задача уже решена. sin(α/2) = (7 + 4√3 - 1)/(7 + 4√3 +1) = √3/2; все преобразования сделайте сами. То есть α/2 = 60°; α = 120°;
Радиус шара, в который вписан куб, вычисляется по формуле:
R=1/2·a √3, (радиус шара, равен половине диагонали куба)
Подставим значения в формулу:
9√3=1/2·а√3
а=9√3/√3*2
а=18
ответ: ребро куба равно 18